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Abstract

We introduce LLaMA, a collection of founda-
tion language models ranging from 7B to 65B
parameters. We train our models on trillions

of tokens, and show that it 1s possible to train
state-of-the-art models using publicly avail-
able datasets exclusively, without resorting

to_proprietary and inaccessible datasets. In
particular, LLaMA-13B outperforms GPT-3

(175B) on most benchmarks, and LLaMA-
65B i1s competitive with the best models,
Chinchilla-70B and PaLM-540B. We release
all our models to the research community’.

Meta Al

performance, a smaller one trained longer will
ultimately be cheaper at inference. For instance,
although Hoffmann et al. (2022) recommends
training a 10B model on 200B tokens, we find
that the performance of a 7B model continues to
improve even after 1T tokens.

The focus of this work 1s to train a series of
language models that achieve the best possible per-
formance at various inference budgets, by training
on more tokens than what 1s typically used. The
resulting models, called LLaMA, ranges from 7B



Model

params dimension nheads nlayers learning rate batch size n tokens

6.7B 4096 32 32 3.0e 4 4M 1.0T
13.0B 5120 40 40 3.0e 4 4M 1.0T
32.5B 6656 52 60 1.5e=4 4M 1.4T
65.2B 8192 64 80 1.5e=4 4M 1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.



GPU Power Total power Carbon emitted

GPU Type consumption GPU-hours consumption (tCO2¢eq)
OPT-1735B A100-80GB 400W 809,472 356 MWh 137
BLOOM-175B A100-80GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-80GB 400W 82,432 36 MWh 14
LLaMA-13B A100-80GB 400W 135,168 59 MWh 23
LLaMA-33B A100-80GB 400W 530,432 233 MWh 90
LLaMA-65B A100-80GB 400W 1,022,362 449 MWh 173

Table 15: Carbon footprint of training different models in the same data center. We follow Wu et al. (2022)
to compute carbon emission of training OPT, BLOOM and our models in the same data center. For the power
consumption of a A100-80GB, we take the thermal design power for NVLink systems, that i1s 400W. We take a
PUE of 1.1 and a carbon intensity factor set at the national US average of 0.385 kg COse per KWh.



Dataset Sampling prop. Epochs Disk size

CommonCrawl 67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% & oo
AI’XiV 2 5 % LLM datasets be like:

- First you start with CommonCrawl

- Then you add C4, which is just CommonCrawl again, but dont worry
StackExchange 2.0% aboutit
. Eye of ne\F(’t and Toe of??s'é

- Then Wikipedia (also is igtnCommonCrawl but dw)
- GitHub (permissively licensed, trust us)
- Wool of bat and tongue of dog

Table 1: P | § e-tl' aining data. Data I1] - Books. just all the Books.

Every Arxw pa[ber; o

training, for each subset we list tk -4
tion, number of epochs performed °
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training on 1.4T tokens, and disk st +::
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C4 (Colossal Clean Crawled Corpus)
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Abstract

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-
tuned on a downstream task, has emerged as a powerful technique in natural language
processing (NLP). The effectiveness of transfer learning has given rise to a diversity of
approaches, methodology, and practice. In this paper, we explore the landscape of transfer
learning techniques for NLP by introducing a unified framework that converts all text-based
language problems into a text-to-text format. Our systematic study compares pre-training
objectives, architectures, unlabeled data sets, transfer approaches, and other factors on
dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results
on many benchmarks covering summarization, question answering, text classification, and
more. To facilitate future work on transfer learning for NLP, we release our data set,
pre-trained models, and code.’

Keywords: transfer learning, natural language processing, multi-task learning, attention-
based models, deep learning
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C4 (Colossal Clean Crawled Corpus)

Starting point: Common Crawl (public monthly web crawl, 3.15 billion pages)

Filtered version of one Common Crawl| dumps (20 TB) using the following heuristics:

* \We only retained lines that ended in a terminal punctuation mark (i.e. a period,
exclamation mark, question mark, or end quotation mark).

 \We discarded any page with fewer than 5 sentences and only retained lines that
contained at least 3 words.

 We removed any page that contained any word on the “List of Dirty, Naughty,
Obscene or Otherwise Bad Words”.



C4 (Colossal Clean Crawled Corpus)

 Many of the scraped pages contained warnings stating that Javascript should be
enabled so we removed any line with the word Javascript.

 Some pages had placeholder “lorem ipsum” text; we removed any page where the
phrase “lorem ipsum” appeared.

e Some pages inadvertently contained code. Since the curly bracket “{” appears in
many programming languages (such as Javascript, widely used on the web) but not
In natural text, we removed any pages that contained a curly bracket.

* Jo deduplicate the data set, we discarded all but one of any three-sentence span
occurring more than once in the data set.

* We used lLangdetect to filter out any pages that were not classified as English with
probability of at least 0.99.
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Figure 1: Training loss over train tokens for the 7B,
13B, 33B, and 65 models. LLaMA-33B and LLaMA-
65B were trained on 1.4T tokens. The smaller models
were trained on 1.0T tokens. All models are trained
with a batch size of 4M tokens.



BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

GPT-3 175B  60.5 81.0 - 78.9 70.2 68.8 51.4 57.6
Gopher 280B 79.3 81.8 50.6 79.2 70.1 - - -
Chinchilla 70B 837 81.8 51.3 80.8 74.9 - - -

Pal.M 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4
PaL.M-cont 62B 839 814 - 80.6 77.0 - - -

Pal.M 540B 88.0 82.3 - 83.4 31.1 76.6 53.0 53.4

B 765 79.8 48.9 76.1 70.1 72.8 47.6 57.2

[T aMA 13B  78.1 80.1 504 79.2 73.0 74.8 52.7 56.4

33B 83.1 82.3 504 82.8 76.0 30.0 57.8 58.6

65B 85.3 828 523 34.2 77.0 78.9 56.0 60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.



HellaSwag: Can a Machine Really Finish Your Sentence?
Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi

Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as "A woman
sits at a piano,” a machine must select the most likely followup: "She sets her fingers on the keys." With the introduction of BERT, near human-level
performance was reached. Does this mean that machines can perform human level commonsense inference?

In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge
dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial
Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers.
AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical 'Goldilocks'
zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models.

Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a
new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-
harder challenges.

Comments: ACL 2019. Project page at this https URL




. ACTIVITYNET A woman is outside with a bucket and a dog. The dog is running
9 around trying to avoid a bath. She...

A. rinses the bucket off with soap and blow dry the dog’s head.
B. uses a hose to keep it from getting soapy.

+ ~|C. gets the dog wet, then it runs away again.
Q“"‘“Aﬁ;f;zga’ D. gets into a bath tub with the dog.
o Come to a complete halt at a stop sign or red light. At a stop sign,
wiki come to a complete halt for about 2 seconds or until vehicles that
arrived before you clear the intersection. If you're stopped at a red
] "10“’ 10 | |ight, proceed when the light has turned green. ..
etermine , ,
who has right A. Stop for no more than two seconds, or until the light turns
of way. yellow. A red light in front of you indicates that you should
stop.
+ B. After you come to a complete stop, turn off your turn signal.
WAdve’Sa”a’ Allow vehicles to move in different directions before moving
Filtering | onto the sidewalk.

C. Stay out of the oncoming traffic. People coming in from
behind may elect to stay left or right.

D. If the intersection has a white stripe in your lane, stop

before this line. Wait until all traffic has cleared before
crossing the intersection.




BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, Kristina Toutanova

In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and
unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are
unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference
to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data
is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial
even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then
re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-
baseline), leaving a significant gap for future work.

Comments: In NAACL 2019




Q: Has the UK been hit by a hurricane?
P:  The Great Storm of 1987 was a violent extratropical
cyclone which caused casualties in England, France
and the Channel Islands ...
A: Yes. [An example event is given. ]
Q: Does France have a Prime Minister and a President?
P: ... The extent to which those decisions lie with the
Prime Minister or President depends upon ...
A: Yes. [Both are mentioned, so it can be inferred both
exist.]
Q: Have the San Jose Sharks won a Stanley Cup?
P: ... The Sharks have advanced to the Stanley Cup fi-
nals once, losing to the Pittsburgh Penguins in 2016
o Question Topic
A: No. [They were in the finals once, and lost.] Category Example Percent  Yes%
Entertainment Media Is You and I by Lady Gaga a cover? 22.0 65.9
. . Nature/Science Are there blue whales in the Atlantic Ocean? 22.0 56.8
Figure 1: Example yes/no questions from the BoolQ Sports Has the US men’s team ever won the World Cup? 11.0 545
: : Law/Government Is there a seat belt law in New Hampshire? 10.0 70.0
dataset. Each cxamp le consists of a question (Q)’ an History Were submarines used in the American Civil War? 5.0 70.0
CXCGI‘pt from a passage (P), and an answer (A) with an Fictional Events Is the Incredible Hulk part of the avengers? 4.0 87.5
explanation added for clarity. Other Is GDP per capita same as per capita income? 26.0 65.4
Question Type
Category Example Percent Yes%
Definitional Is thread seal tape the same as Teflon tape? 14.5 55.2
Existence Is there any dollar bill higher than a 100? 14.5 69.0
Event Occurrence Did the great fire of London destroy St. Paul’s Cathedral? 11.5 73.9
Other General Fact Is there such thing as a dominant eye? 29.5 62.7
Other Entity Fact Is the Arch in St. Louis a national park? 30.0 63.3

Table 1: Question categorization of BoolQ. Question topics are shown in the top half and question types are shown
in the bottom half.
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MATH +majiek GSMSE8k +majiek Params HumanEval MBPP

B 1.5 _ 4.1 _ pass@ @] @l00 @] @30

PaLM 62B 44 - 33.0 - [aMDA 137B 14.0 473 148 624
540B 8.8 - 56.5 - PaLM 8B 3.6* 18.7* 5.0 35.7*
8B 14.1 254 162 284 Pal.M 62B 159 46.3* 21.4 63.2*

Minerva 62B 27.6 434 52.4 68.5 Pal _M-cont 62B 23.7 - 31.2 -
540B 33.6 503 68.5 78.5 Pal.M 540B 262 762 36.8 75.0

B 29 69 1.0 18.1 7B 105 36.5 177 562

[ LaMA 133 3? 185-82 ?13;2 igi - 13B 158 525 220 64.0
33B 7. - - - 33B 21.7 707 302 73.4

65B 10.6 20.5 509 69.7 65B 237 793 377 76.8

Table 7: Model performance on quantitative reason-
ing datasets. For majority voting, we use the same
setup as Minerva, with k = 256 samples for MATH
and £ = 100 for GSM8k (Minerva 540B uses £k = 64
for MATH and and £ = 40 for GSM8k). LLaMA-65B
outperforms Minerva 62B on GSMBK, although it has

not been fine-tuned on mathematical data.

Table 8: Model performance for code generation.
We report the pass@ score on HumanEval and MBPP.
HumanEval generations are done in zero-shot and
MBBP with 3-shot prompts similar to Austin et al.
(2021). The values marked with * are read from figures

in Chowdhery et al. (2022).



Training Verifiers to Solve Math Word Problems

Karl Cobbe™ Vineet Kosaraju”® Mohammad Bavarian Mark Chen
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Jacob Hilton Reiichiro Nakano Christopher Hesse John Schulman

OpenAl

Abstract

State-of-the-art language models can match human performance on
many tasks, but they still struggle to robustly perform multi-step mathe-
matical reasoning. To diagnose the failures of current models and support
research, we introduce GSM8K, a dataset of 8.5K high quality linguisti-
cally diverse grade school math word problems. We find that even the
largest transformer models fail to achieve high test performance, despite
the conceptual simplicity of this problem distribution. To increase per-
formance, we propose training verifiers to judge the correctness of model
completions. At test time, we generate many candidate solutions and
select the one ranked highest by the verifier. We demonstrate that ver-
ification significantly improves performance on GSM8K, and we provide
strong empirical evidence that verification scales more effectively with
increased data than a finetuning baseline.




Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning,
she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How
much was her revenue for the milk if each gallon costs $3.507?

Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning.

So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons.

She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons.

Thus, her total revenue for the milk is $3.50/gallon x 176 gallons = $<<3.50*176=616>>616.

Final Answer: 616

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2
of the people have 4, and 1 person has 5. How many sodas are left over when the party is over?

Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas

6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people

Each of those people drinks 3 sodas, so they drink 3*3=<<3*3=9>>9 sodas

Two people drink 4 sodas, which means they drink 2*4=<<4*2=8>>8 sodas

With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas

As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left

Final Answer: 11

Figure 1: Three example problems from GSMS8K. Calculation annotations are
highlighted in red.




arX1v:2107.03374v2 [cs.LG] 14 Jul 2021

Evaluating Large Language Models Trained on Code

Mark Chen ! Jerry Tworek ' Heewoo Jun"' Qiming Yuan”
Jared Kaplan “? Harri Edwards' Yuri Burda! Nicholas Joseph? Greg Brockman' Alex Ray! Raul Puri'

1 1

Henrique Ponde de Oliveira Pinto

Gretchen Krueger! Michael Petrov! Heidy Khlaaf® Girish Sastry' Pamela Mishkin! Brooke Chan '
Scott Gray ! Nick Ryder! Mikhail Pavlov' Alethea Power! Lukasz Kaiser' Mohammad Bavarian
Clemens Winter ! Philippe Tillet' Felipe Petroski Such! Dave Cummings' Matthias Plappert '

Fotios Chantzis! Elizabeth Barnes' Ariel Herbert-Voss! William Hebgen Guss' Alex Nichol! Alex Paino !

Nikolas Tezak ' Jie Tang! Igor Babuschkin! Suchir Balaji' Shantanu Jain! William Saunders '
Christopher Hesse' Andrew N. Carr! Jan Leike! Josh Achiam' Vedant Misra! Evan Morikawa '
Alec Radford! Matthew Knight! Miles Brundage! Mira Murati! Katie Mayer! Peter Welinder !

Bob McGrew ! Dario Amodei? Sam McCandlish? Ilya Sutskever! Wojciech Zaremba !

Abstract

We introduce Codex, a GPT language model fine-
tuned on publicly available code from GitHub,
and study its Python code-writing capabilities.
A distinct production version of Codex powers
GitHub Copilot. On HumanEval, a new evalua-
tion set we release to measure functional correct-
ness for synthesizing programs from docstrings,
our model solves 28.8% of the problems, while
GPT-3 solves 0% and GPT-J solves 11.4%. Fur-
thermore, we find that repeated sampling from the
model is a surprisingly effective strategy for pro-
ducing working solutions to difficult prompts. Us-
ing this method, we solve 70.2% of our problems
with 100 samples per problem. Careful investiga-
tion of our model reveals its limitations, including
difficulty with docstrings describing long chains
of operations and with binding operations to vari-
ables. Finally, we discuss the potential broader
impacts of deploying powerful code generation
technologies, covering safety, security, and eco-
nomics.

1. Introduction

Scalable sequence prediction models (Graves, 2014;
Vaswani et al., 2017; Child et al., 2019) have become a
general-purpose method for generation and representation
learning in many domains, including natural language pro-
cessing (Mikolov et al., 2013; Sutskever et al., 2014; Dai &
Le, 2015; Peters et al., 2018; Radford et al., 2018; Devlin
et al., 2018), computer vision (Van Oord et al., 2016; Menick
& Kalchbrenner, 2018; Chen et al., 2020; Bao et al., 2021),
audio and speech processing (Oord et al., 2016; 2018; Dhari-
wal et al., 2020; Baevski et al., 2020), biology (Alley et al.,
2019; Rives et al., 2021), and even across multiple modali-
ties (Das et al., 2017; Lu et al., 2019; Ramesh et al., 2021;
Zellers et al., 2021). More recently, language models have
also fueled progress towards the longstanding challenge
of program synthesis (Simon, 1963; Manna & Waldinger,
1971), spurred by the presence of code in large datasets
(Husain et al., 2019; Gao et al., 2020) and the resulting pro-
gramming capabilities of language models trained on these
datasets (Wang & Komatsuzaki, 2021). Popular language
modeling objectives like masked language modeling (Devlin
et al., 2018) and span prediction (Raffel et al., 2020) have
also been adapted to train their programming counterparts
CodeBERT (Feng et al., 2020) and PyMT5 (Clement et al.,




def incr_list(l: list):
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
(6, 4, 6, 3, 4, 4, 10, 1, 124]

return [1 + 1 for 1 in 1]

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit
tests are 0.9, 0.17, and 0.005. The prompt provided to the model 1s shown with a white background, and a successful model-generated

completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not
programmatically copied from existing sources. Random problems and samples can be found in Appendix B.




def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==9
solution([30, 13, 24, 321]) ==0

return sum(lst[i] for 1 in range(0,len(lst)) if 1 % 2 == 0 and 1st[1] % 2 == 1)

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit
tests are 0.9, 0.17, and 0.005. The prompt provided to the model 1s shown with a white background, and a successful model-generated

completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not
programmatically copied from existing sources. Random problems and samples can be found in Appendix B.




def encode_cyclic(s: str):

returns encoded string by cycling groups of three characters.

# split string to groups. Each of length 3.

groups = [s[(3 *x i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]

# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

def decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function. Returns decoded string.

# split string to groups. Each of length 3.

groups = [s[(3 * 1):min((3 * 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]

# cycle elements 1in each group.

groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
return "".join(groups)

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit
tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated

completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not
programmatically copied from existing sources. Random problems and samples can be found in Appendix B.




GPT-4 Technical Report

OpenAI”

Abstract

We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world scenarios, GPT-4 exhibits human-level performance
on various professional and academic benchmarks, including passing a simulated
bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-
based model pre-trained to predict the next token in a document. The post-training
alignment process results in improved performance on measures of factuality and
adherence to desired behavior. A core component of this project was developing
infrastructure and optimization methods that behave predictably across a wide
range of scales. This allowed us to accurately predict some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of

GPT-4.
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Andrew Kondrich OpenAl Evals open-sourcing co-lead
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This report focuses on the capabillities, limitations, and safety properties of GPT-4.
GPT-4 is a Transformer-style model [39] pre-trained to predict the next token in a
document, using both publicly available data (such as internet data) and data
licensed from third-party providers. The model was then fine-tuned using
Reinforcement Learning from Human Feedback (RLHF) [40]. Given both the
competitive landscape and the safety implications of large-scale models like
GP1T-4, this report contains no further details about the architecture (including
model size), hardware, training compute, dataset construction, training method,

or similar.



OpenAl codebase next word prediction
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Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which 1s not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excludlng GPT-4) 1s
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis 1s training compute
normalized so that GPT-4 1s 1.




Capability prediction on 23 coding problems
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Figure 2. Performance of GPT-4 and smaller models. The metric 1s mean log pass rate on a subset of
the HumanEval dataset. A power law fit to the smaller models (excluding GPT-4) is shown as the dotted

line; this fit accurately predicts GPT-4’s performance. The x-axis is training compute normalized so that
GPT-4 is 1.



GPT-4 GPT-3.5 LM SOTA SOTA
Evaluated Evaluated Best external LM Best external model (incl.
few-shot few-shot evaluated few-shot benchmark-specific tuning)
MMLU [49] 86.4% 70.0% 70.7% 75.2%
Multiple-choice questions in 57 S-shot S-shot 5-shot 5-shot Flan-PalLM [51]
subjects (professional & academic) U-PalLM [50]
HellaSwag [52] 95.3% 85.5% 84.2% 85.6
Commonsense reasoning around 10-shot 10-shot LLaMA (validation ALUM [53]
everyday events set) [28]
AI2 Reasoning 96.3 % 85.2% 85.2% 86.5%
Challenge (ARC) [54]
Grade-school multiple choice 25-shot 25-shot 8-shot PalLM [55] ST-MOE [18]
science questions. Challenge-set.
WinoGrande [56] 87.5% 81.6% 85.1% 85.1%
Commonsense reasoning around 5-shot 5-shot 5-shot PalLM [3] 5-shot PalLM [3]
pronoun resolution
HumanEval [43] 67.0% 48.1% 26.2% 65.8%
Python coding tasks 0-shot 0-shot 0-shot PalLM [3] CodeT + GPT-3.5 [57]
DROP [58] (F1 score) 80.9 64.1 70.8 88.4
Reading comprehension & 3-shot 3-shot 1-shot PaLM [3] QDGAT [59]
arithmetic.
GSM-8K [60] 92.0%* 57.1% 58.8% 87.3%
Grade-school mathematics 5-shot 5-shot 8-shot Minerva [61] Chinchilla +
questions chain-of-thought SFT+ORM-RL, ORM
reranking [62]
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MEASURING MASSIVE MULTITASK
LLANGUAGE UNDERSTANDING

Dan Hendrycks Collin Burns Steven Basart Andy Zou
UC Berkeley Columbia University UChicago UC Berkeley
Mantas Mazeika Dawn Song Jacob Steinhardt
UIUC UC Berkeley UC Berkeley
ABSTRACT

We propose a new test to measure a text model’s multitask accuracy. The test
covers 57 tasks including elementary mathematics, US history, computer science,
law, and more. To attain high accuracy on this test, models must possess extensive
world knowledge and problem solving ability. We find that while most recent
models have near random-chance accuracy, the very largest GPT-3 model improves
over random chance by almost 20 percentage points on average. However, on every
one of the 57 tasks, the best models still need substantial improvements before
they can reach expert-level accuracy. Models also have lopsided performance
and frequently do not know when they are wrong. Worse, they still have near-
random accuracy on some socially important subjects such as morality and law.
By comprehensively evaluating the breadth and depth of a model’s academic and
professional understanding, our test can be used to analyze models across many
tasks and to identify important shortcomings.




Few Shot Prompt and Predicted Answer

The following are multiple choice questions
about high school mathematics.

How many numbers are in the list 25, 26, ..., 100?
(A) 75 B) 76 (C) 22 (D) 23
Answer: B

Compute i+ i*+ >+ -+ + 2%+ >,
(A) -1 (B) 1 (C)i (D) -i
Answer: A

If 4 daps =7 yaps, and 5 yaps = 3 baps,
how many daps equal 42 baps?

(A) 28 (B) 21 (C) 40 (D) 30

Answer: C

| W

(a) An example of few-shot learning and inference us-
ing GPT-3. The blue underlined bold text i1s the auto-
completed response from GPT-3, while the preceding
text 1s the user-inputted prompt. In this 2-shot learning
example, there are two instruction examples and one
initially incomplete example. On average, GPT-3 has
low accuracy on high school mathematics questions.



Professional Law

As Seller, an encyclopedia salesman, approached the grounds on which Hermit's house was situated,
he saw a sign that said, "No salesmen. Trespassers will be prosecuted. Proceed at your own risk."

Although Seller had not been invited to enter, he ignored the sign and drove up the driveway toward
the house. As he rounded a curve, a powerful explosive charge buried in the driveway exploded, and
Seller was injured. Can Seller recover damages from Hermit for his injuries?

(A) Yes, unless Hermit, when he planted the charge, intended only to deter, not harm, intruders. ¥
(B) Yes, 1f Hermit was responsible for the explosive charge under the driveway. v 4
(C) No, because Seller ignored the sign, which warned him against proceeding further. ) ¢
(D) No, if Hermit reasonably feared that intruders would come and harm him or his family. ) ¢

Conceptual

When you drop a ball from rest it accelerates downward at 9.8 m/s%. If you instead throw it
downward assuming no air resistance its acceleration immediately after leaving your hand is
(A) 9.8 m/s?

(B) more than 9.8 m/s?

(C) less than 9.8 m/s?

(D) Cannot say unless the speed of throw 1s given.

Physics

XX XS




& In the complex z-plane, the set of points satistying the equation z* = [z|* 1s a
® ® (A) pair of points X
% E (B) circle X
© E (C) half-line X
> (D) line v
E One of the reasons that the government discourages and regulates monopolies 1s that
S (A) producer surplus 1s lost and consumer surplus 1s gained. X
§ (B) monopoly prices ensure productive efficiency but cost society allocative efficiency. ) ¢
S (C) monopoly firms do not engage in significant research and development. )¢
-§ (D) consumer surplus 1s lost with higher prices and lower levels of output. 4
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DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over
Paragraphs

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, Matt Gardner

Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a
large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new English
reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-
created, 96k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete
operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content
of paragraphs than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic
parsing literature on this dataset and show that the best systems only achieve 32.7% F1 on our generalized accuracy metric, while expert human
performance is 96.0%. We additionally present a new model that combines reading comprehension methods with simple numerical reasoning to

achieve 47.0% F1.




Reasoning Passage (some parts shortened) Question Answer BiDAF
Subtraction That year, his Untitled (1981), a painting of a haloed, How many more dol- 4300000 $16.3
(28.8%) black-headed man with a bright red skeletal body, de- lars was the Untitled million

picted amid the artists signature scrawls, was sold by (1981) painting sold

Robert Lehrman for $16.3 million, well above its $12  for than the 12 million

million high estimate. dollar estimation?
Comparison In 1517, the seventeen-year-old King sailed to Castile.  Where did Charles Castile Aragon
(18.2%) There, his Flemish court .... In May 1518, Charles travel to first, Castile

traveled to Barcelona in Aragon. or Barcelona?
Selection In 1970, to commemorate the 100th anniversary of the @ Who was the Uni- Don Baker
(19.4%) founding of Baldwin City, Baker University professor versity professor that Mueller

and playwright Don Mueller and Phyllis E. Braun, helped produce The

Business Manager, produced a musical play entitled Ballad Of Black Jack,

The Ballad Of Black Jack to tell the story of the events Ivan Boyd or Don

that led up to the battle. Mueller?
Addition Before the UNPROFOR fully deployed, the HV clashed = What date did the JINA 3 March 2 March
(11.7%) with an armed force of the RSK in the village of Nos form a battlegroup to 1992 1992

Kalik, located in a pink zone near Sibenik, and captured ~ counterattack after the

the village at 4:45 p.m. on 2 March 1992. The JNA
formed a battlegroup to counterattack the next day.

village of Nos Kalik
was captured?




Count Denver would retake the lead with kicker Matt Prater  Which kicker kicked John Matt
(16.5%) nailing a 43-yard field goal, yet Carolina answered as  the most field goals? Kasay Prater
and Sort kicker John Kasay ties the game with a 39-yard field
(11.7%) goal. ... Carolina closed out the half with Kasay nail-

ing a 44-yard field goal. ... In the fourth quarter, Car-

olina sealed the win with Kasay’s 42-yard field goal.
Coreference  James Douglas was the second son of Sir George Dou- How many years af- 10 1553
Resolution  glas of Pittendreich, and Elizabeth Douglas, daughter ter he married Eliza-
(3.7%) David Douglas of Pittendreich. Before 1543 he mar- beth did James Dou-

ried Elizabeth, daughter of James Douglas, 3rd Earl of glas succeed to the ti-

Morton. In 1553 James Douglas succeeded to the title tle and estates of his

and estates of his father-in-law. father-in-law?
Other Although the movement initially gathered some 60,000 How many adherents 15000 60,000
Arithmetic  adherents, the subsequent establishment of the Bulgar- were left after the es-
(3.2%) ian Exarchate reduced their number by some 75%. tablishment of the Bul-

garian Exarchate?

Set of According to some sources 363 civilians were killed in  What were the 3 vil- Kavadarci, Negotino
spans Kavadarci, 230 in Negotino and 40 in Vatasha. lages that people were  Negotino, and 40 in
(6.0%) killed 1in? Vatasha Vatasha
Other This Annual Financial Reportis our principal financial What does AFR stand  Annual one of the
(6.8%) statement of accountability. The AFR gives a compre- for? Financial  Big Four

hensive view of the Department’s financial activities ... Report audit firms




Inverse scaling prize

VERVACH CRILGRUIE Any tasks like this?

Performance
Performance

Model size Model size



Task “hindsight-neglect-10shot”

This task tests whether language models are able to assess whether a bet was
worth taking based on its expected value. The author provides few shot
examples in which the model predicts whether a bet is worthwhile by correctly
answering yes or no when the expected value of the bet is positive (where the
model should respond that ‘yes’, taking the bet is the right decision) or

negative (‘no’, not the right decision).



Task “hindsight-neglect-10shot”

In the few shot examples, the actual outcome always matches the expected
value (i.e. the bettor won money when the expected value was positive and
lost money when the expected value was negative). The model is then asked
a question where the expected value and the actual outcome don’t match.
Larger models were more likely to choose the answer that contradicts the

expected value than smaller models.

This is important as it demonstrates that perfectly valid few shot examples
can still cause the model to answer incorrectly by demonstrating a spurious

correlation (in this case whether the outcome matched the expected value).



Example (truncated)

Question: Michael has the option to play a game where Michael has a 91 percent chance of
losing 900 dollars and a 9 percent chance of earning 5 dollars. Michael plays the game and
ends up losing 900 dollars. Did Michael make the right decision? Choose Y or N.

Answer: N

Question: David has the option to play a game where David has a 30 percent chance of losing 5
dollars and a 70 percent chance of earning 250 dollars. David plays the game and ends up
earning 250 dollars. Did David make the right decision? Choose Y or N.

Answer: Y
[... 8 more few-shot examples ... ]

Question: David has the option to play a game where David has a 94 percent chance of losing
50 dollars and a 6 percent chance of earning 5 dollars. David plays the game and ends up
earning 5 dollars. Did David make the right decision? Choose Y or N.

Answer:

(where the model should choose N since the game has an expected value of losing $44.)
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Inverse scaling prize, hindsight neglect

Accuracy
100 ®
50
O
O
® @
0
ada babbage curie gpt-3.5 gpt-4
Model

Figure 3. Performance of GPT-4 and smaller models on the Hindsight Neglect task. Accuracy 1s shown
on the y-axis, higher 1s better. ada, babbage, and curie refer to models available via the OpenAl API [47].



Exam

GPT-4

GPT-4 (no vision)

GPT-3.5

Uniform Bar Exam (MBE+MEE+MPT)
LSAT
SAT Evidence-Based Reading & Writing
SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal
Graduate Record Examination (GRE) Writing
USABO Semifinal Exam 2020
USNCO Local Section Exam 2022
Medical Knowledge Self-Assessment Program
Codeforces Rating
AP Art History
AP Biology
AP Calculus BC
AP Chemistry
AP English Language and Composition
AP English Literature and Composition

298 /400 (~90th)
163 (~88th)
710/ 800 (~93rd)
700 / 800 (~89th)
163 / 170 (~80th)
169 /170 (~99th)
4 /6 (~54th)
87 /150 (99th - 100th)
36/ 60
75 %

392 (below 5th)
5 (86th - 100th)
5 (85th - 100th)
4 (43rd - 59th)
4 (71st - 88th)
2 (14th - 44th)
2 (8th - 22nd)

298 /400 (~90th)
161 (~83rd)
710/ 800 (~93rd)
690 / 800 (~89th)
157 /170 (~62nd)
165 /170 (~96th)
4/ 6 (~54th)
87 / 150 (99th - 100th)
38 /60
75 %

392 (below 5th)
5 (86th - 100th)
5 (85th - 100th)
4 (43rd - 59th)
4 (71st - 88th)
2 (14th - 44th)
2 (8th - 22nd)

213 /400 (~10th)
149 (~40th)
670/ 800 (~87th)
590/ 800 (~70th)
147/ 170 (~25th)
154 /170 (~63rd)
4/ 6 (~54th)
43 /150 (31st - 33rd)
24 /60
53 %

260 (below 5th)
5 (86th - 100th)
4 (62nd - 85th)
1 (Oth - 7th)

2 (22nd - 46th)
2 (14th - 44th)
2 (8th - 22nd)



AP Environmental Science
AP Macroeconomics
AP Microeconomics

AP Physics 2
AP Psychology
AP Statistics
AP US Government
AP US History
AP World History
AMC 10°
AMC 12°

Introductory Sommelier (theory knowledge)
Certified Sommelier (theory knowledge)
Advanced Sommelier (theory knowledge)

Leetcode (easy)

Leetcode (medium)

Leetcode (hard)

S (91st - 100th)
S (84th - 100th)
5 (82nd - 100th)
4 (66th - 84th)

5 (83rd - 100th)
5 (85th - 100th)
5 (88th - 100th)
5 (89th - 100th)

4 (65th - 87th)
30/ 150 (6th - 12th)
60 / 150 (45th - 66th)
92 %

86 %

77 %

31/41
21/ 80
3/45

5 (91st - 100th)

5 (84th - 100th)

4 (60th - 82nd)

4 (66th - 84th)

5 (83rd - 100th)

5 (85th - 100th)

5 (88th - 100th)

4 (74th - 89th)

4 (65th - 87th)
36 /150 (10th - 19th)
48 / 150 (19th - 40th)

92 %

86 %

77 %
31/41
21/ 80
3/45

5 (91st - 100th)
2 (33rd - 48th)
4 (60th - 82nd)
3 (30th - 66th)
5 (83rd - 100th)
3 (40th - 63rd)
4 (7'7th - 88th)
4 (74th - 89th)

4 (65th - 87th)
36 /150 (10th - 19th)
30/ 150 (4th - 8th)
80 %

58 %

46 %

12 /41
8 /80
0/45



Exam results (ordered by GPT-3.5 performance)

gpt-4 [

Estimated percentile lower bound (among test takers gpt-4 (no vision)
g ( J ) gpt3.5 M

100% —

80% —

60% —

40% —

20% —

Figure 4. GPT performance on academic and professional exams. In each case, we simulate the
conditions and scoring of the real exam. Exams are ordered from low to high based on GPT-3.5
performance. GPT-4 outperforms GPT-3.5 on most exams tested. To be conservative we report the
lower end of the range of percentiles, but this creates some artifacts on the AP exams which have very
wide scoring bins. For example although GPT-4 attains the highest possible score on AP Biology (5/5),
this is only shown in the plot as 85th percentile because 15 percent of test-takers achieve that score.



GPT-4 visual input example, Ecole Polytechnique Exam Question:

User

GPT-4

Answer question I.1.a. Think step-by-step.

I. Principe de la détection de rayonnement avec un bolométre

Comme illustré sur la figure 1 un bolométre est constitué d’un absorbeur qui regoit le rayon-
nement que 'on désire détecter. Sa température T, supposée uniforme, est mesurée a 'aide d'un

thermomeétre incorporé, constitué d'un matériau conducteur dont la résistance R(T') varie avec la
1dR

température T'; cette variation est caractérisée par le coefficient a = RdT" [’ensemble posséde
- (
la capacité thermique Cyy.

Un barreau, conducteur thermique, homogéne, de longueur L, de section S et de conducti-
vité thermique A et sans échanges thermiques latéraux, relie le bolométre & un thermostat de

température T}, fixe.

rayonnement incident puissance F,

/ / absorbeur
P B S—— =il

courant de

polarisation
> R(T)
I/ Clh 4
LSaA barreau
conducteur
thermostat T,

Figure 1 - Schéma d’un bolométre

I.1. Dans cette premiére partie, on étudie le comportement du bolométre en régime station-
naire, a la température de fonctionnement T = T,.

I.1.a) Exprimer la température 7°(z) en tout point du barreau conducteur repéré par son
abscisse z; on prendra T(0) = Ty et T(L) = T;.

To answer question I.1.a, we need to express the temperature 7'(z) in every point

of the conductive bar, which is characterized by the abscissa x. We are given that
T(0)=T0and T'(L) = T.

For a stationary regime, the heat equation for the one-dimensional heat
conduction in the bar is:
d*T/dz? =0

Integrating once, we get:
dT/ dr = C 1

Integrating a second time:
T(x) = Ciz + C

To determine the constants C; and Cs, we use the boundary conditions:
T'(0) = T0, which gives Cy = T0
T(L) = Tb, which gives Cy = (Tb —T0)/L

Finally, the expression for 7'(x) is:

T(x) =(Tb—T0)* (z/L)+T0

This represents a linear temperature profile along the conductive bar, with a slope
of (Tb —T0)/L.

Table 15. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question which requires understanding a physics problem with a diagram written in French and solving
it using chain-of-thought prompting.



GPT-4 visual input example, Extreme Ironing:

User What 1s unusual about this image?

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures. jpg

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing
board attached to the roof of a moving taxi.

Table 16. Example prompt demonstrating GPT-4’s visual input capability. The prompt requires image
understanding.



GPT-4 visual input example, Pixel to Paper Summaries:

User Below is part of the InstuctGPT paper. Could you read and summarize it to me?

Training language models to follow instructions £ el e "}
with human feedback &

Lomg Ousang’ T Wu' N Jiang  Dioge Abuwide’  Carvel 1. Waisnright

Porsels Mishikla'  Choog Zhang  Sondbial Agaewal  Katarkas Nama  Abex Ray

Jobn Schabenm  Jacohs lien  Frascr Kelton Lobe Miller  Maddic Simon Moded e

sl
.~
coeoe
~
oo

Arsanda Adudl Proer Welinder Lo e T

Jon Lok Hyan Lowe”

GPT-4 The InstructGPT paper focuses on training large language models to follow instructions
with human feedback. The authors note that making language models larger doesn’t
inherently make them better at following a user’s intent. Large models can generate outputs
that are untruthful, toxic, or simply unhelpful.

To address this issue, the authors fine-tune language models on a wide range of
tasks using human feedback. They start with a set of labeler-written prompts and responses,
then collect a dataset of labeler demonstrations of the desired model behavior. They
fine-tune GPT-3 using supervised learning and then use reinforcement learning from human
feedback to further fine-tune the model. The resulting model, called InstructGPT, shows
improvements in truthfulness and reductions in toxic output generation while having
minimal performance regressions on public NLP datasets.

The authors conclude that fine-tuning with human feedback is a promising direc-
tion for aligning language models with human intent.




o

Stap 1 Step 2 Stap 3

Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using
reinforcement learning.
A prompt is :\‘} A prompt and :‘} A néw prompt ~
sampled from our bw'mm sevaral model u’."ﬂm is sampled from PR—
prompt dataset. Worehng 19 4 & o oM outputs are Wreiny 9 4 & e o ™he dataset e
sampled
v - .-.o.--. :.,..o.. Tha policy :
A labaler o el ’.- )
gamonstratas the -‘O | .,.9._. ~..°L. . an output g;@ 1
desired output ”’ — e '
behawior Saave poape nert = f & 4
e A labeler ranks
. the outputs from {0‘; o
This data is used . best to worst o .‘!‘ 0-0 . '
to fine-tune GPT-3 s e -
with supervised Caluistes
learning % ’ T reward for -
o This data is used - the output
P r—’ﬁ—"— to train our '
reward model. > The reward s
“°‘°'° used 10 update 'l
the policy
using PPO
o 2: tagram tllustrating steps of © od: (1) s nsed fine-tuni FT), (2
Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section[3] for more details
on our method.

User Could you explain the process described in Figure 2?
GPT-4 Figure 2 in the InstructGPT paper illustrates the three steps of their method:

1. Supervised fine-tuning (SFT): They collect demonstration data, which consists
of labeler-written prompts and desired output behavior. This data is used to fine-tune GPT-3
with supervised learning.

2. Reward model (RM) training: They collect comparison data, where a labeler
ranks the outputs from several model samples (from best to worst). This data is used to train
the reward model.

3. Reinforcement learning using Proximal Policy Optimization (PPO): They opti-
mize a policy against the reward model using reinforcement learning. For each new prompt
sampled from the dataset, the policy generates an output. The reward model calculates a
reward for the output, and the reward 1s used to update the policy using the PPO algorithm.

These three steps are iteratively performed to train the InstructGPT model, which
aims to generate outputs that align better with human preferences and follow instructions

more effectively.
B




Key trend from GPT-1 to GPT-4:
Scaling

= Larger models, trained on
more data, with more compute



UNDERSTANDING
MACHINE
LEARNING




COROLLARY 2.3 Let H be a finite hypothesis class. Let § € (0,1) and € > 0

and let m be an integer that satisfies

> log([#]/9)

¢
Then, for any labeling function, f, and for any distribution, D, for which the
realizability assumption holds (that is, for some h € H, Lip s(h) = 0), with
probability of at least 1 — 0 over the choice of an i.i.d. sample S of size m, we
have that for every ERM hypothesis, hg, it holds that

L(D,f) (hs) S €.

m



THEOREM 6.8 (The Fundamental Theorem of Statistical Learning — Quantita-

tive Version) Let H be a hypothesis class of functions from a domain X to {0,1}
and let the loss function be the 0 — 1 loss. Assume that VCdim(H) = d < oo.
Then, there are absolute constants C1,Cy such that:

1. 'H has the uniform convergence property with sample complezity

Cld+ 1(2%(1/5) < mY%(e, 8) < ng+ lcl%(l/é)
2. H s agnostic PAC learnable with sample complexity
Cld+12§(1/5) < ma(e.8) < CQd-I-lc;%(l/(S)
3. H 1s PAC learnable with sample complexity
Cld+ log(1/9) < my(e,8) < Czdlog(l/e) + log(1/4)

€ €



THEOREM 26.5 Assume that for all z and h € H we have that |{(h, z)| < c.
Then,

1. With probability of at least 1 — 0, for all h € H,

, 2 In(2/6
Lp(h) — Lg(h) < 2S,N*me(EOHOS')-I—C\/ 'r(n/ )
In particular, this holds for h = ERMy (.5).
2. With probability of at least 1 — o, for all h € H,
2 In(4/9
Lp(h) — Lg(h) < 2R((oHoS)+ 40\/ n;// )
In particular, this holds for h = ERMy«/(.S).
3. For any h*, with probability of at least 1 — 0,
21
Lp(ERMy(S)) — Lp(h™) < 2R((oHoS)+5 C\/ nTELS/J).



Reading Comprehension Translation Summarization Question Answering
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Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results

are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.



' STATISTICAL LEARNING !

People , our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,
nbiased and consider using 3
Tt margin

NEURAL
NETWORKS

MORE
LAYERS




User

GPT-4

Can you explain why this is funny. Think about it step-by-step.

L STATISTICAL LEARNING !

People , our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,

ake the next kernel stable,
nbiased and consider using 3

STACK
MORE
LAYERS

But unironically

The comic is satirizing the difference in approaches to improving model
performance between statistical learning and neural networks.

In statistical learning, the character is shown to be concerned with overfit-
ting and suggests a series of complex and technical solutions, such as minimizing
structural risk, reworking the loss function, and using a soft margin.

In contrast, the neural networks character simply suggests adding more
layers to the model. This is often seen as a common solution to improving
performance in neural networks, but it’s also considered a simplistic and
brute-force approach.

The humor comes from the contrast between the complexity and speci-
ficity of the statistical learning approach and the simplicity and generality of the
neural network approach. The "But unironically" comment adds to the humor by
implying that, despite being simplistic, the "stack more layers" approach is often
effective in practice.



