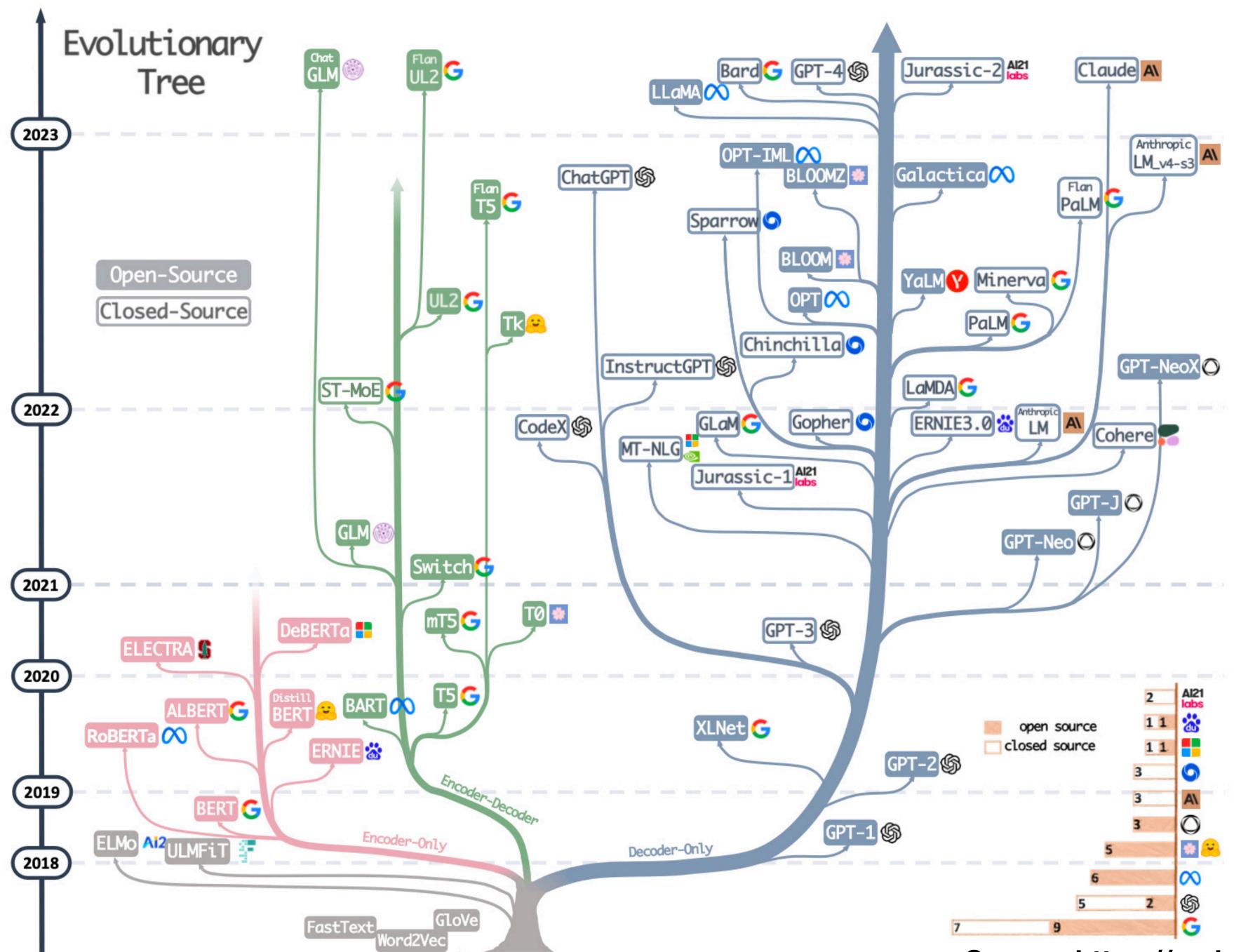
GPT-style language models, generalization bounds 493 / 599 May 15 2023 Ludwig Schmidt



Source: https://arxiv.org/abs/2304.13712

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin **Edouard Grave**, Guillaume Lample*

Abstract

We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community¹.

Meta AI

performance, a smaller one trained longer will ultimately be cheaper at inference. For instance, although Hoffmann et al. (2022) recommends training a 10B model on 200B tokens, we find that the performance of a 7B model continues to improve even after 1T tokens.

The focus of this work is to train a series of language models that achieve the best possible performance at various inference budgets, by training on more tokens than what is typically used. The resulting models, called *LLaMA*, ranges from 7B to 65B parameters with competitive performance

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

Model

	GPU Type	GPU Power consumption	GPU-hours	Total power consumption	Carbon emitted (tCO ₂ eq)
OPT-175B	A100-80GB	400W	809,472	356 MWh	137
BLOOM-175B	A100-80GB	400W	1,082,880	475 MWh	183
LLaMA-7B	A100-80GB	400W	82,432	36 MWh	14
LLaMA-13B	A100-80GB	400W	135,168	59 MWh	23
LLaMA-33B	A100-80GB	400W	530,432	233 MWh	90
LLaMA-65B	A100-80GB	400W	1,022,362	449 MWh	173

Table 15: Carbon footprint of training different models in the same data center. We follow Wu et al. (2022) to compute carbon emission of training OPT, BLOOM and our models in the same data center. For the power consumption of a A100-80GB, we take the thermal design power for NVLink systems, that is 400W. We take a PUE of 1.1 and a carbon intensity factor set at the national US average of 0.385 kg CO_2e per KWh.

Dataset	Sampli
CommonCraw	l 67
C4	15
Github	4
Wikipedia	4
Books	4
ArXiv	2
StackExchange	e 2

Table 1: **Pre-training data.** Data m training, for each subset we list the tion, number of epochs performed training on 1.4T tokens, and disk si runs on 1T tokens have the same sa

ing prop. Epochs Disk size

- .0%
- .0%
- .5%
- .5%
- 1.5%
- 2.5%
- 2.0%

1.10	3.3 TB
1.06	783 GB
0.64	328 GB
2.45	83 GB

shawn swyx wang @swyx

LLM datasets be like:

- First you start with CommonCrawl
- Then you add C4, which is just CommonCrawl again, but dont worry about it
- Eye of new to and Toe of to and Toe of to an and the second second
- Then Wikipedia (also is ik CommonCrawl but dw)
- GitHub (permissively licensed, trust us)
- Wool of bat and tongue of dog
- Books. just all the Books.
- Every Arxiv paper,

O

- Adder's tork, and bling -worms sting
- · Stack Exchange Q&AS
- **15432K**≓Views
- 73 Retweets 6 Quotes 623 Likes

1

89 Bookmarks

 \square

C4 (Colossal Clean Crawled Corpus)

Colin Raffel* Noam Shazeer^{*} Adam Roberts* Katherine Lee* Sharan Narang Michael Matena Yanqi Zhou Wei Li Peter J. Liu Google, Mountain View, CA 94043, USA

Editor: Ivan Titov

Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.¹ Keywords: transfer learning, natural language processing, multi-task learning, attentionbased models, deep learning

2020 Jul ∞ 2 [cs.LG] 0.10683v3 _ 5 arXiv:

Exploring the Limits of Transfer Learning with a Unified **Text-to-Text** Transformer

CRAFFEL@GMAIL.COM NOAM@GOOGLE.COM ADAROB@GOOGLE.COM KATHERINELEE@GOOGLE.COM SHARANNARANG@GOOGLE.COM MMATENA@GOOGLE.COM YANQIZ@GOOGLE.COM MWEILI@GOOGLE.COM PETERJLIU@GOOGLE.COM

— T5 paper

Abstract

C4 (Colossal Clean Crawled Corpus)

- Starting point: **Common Crawl** (public monthly web crawl, 3.15 billion pages)
- Filtered version of one Common Crawl dumps (20 TB) using the following heuristics:
- We only retained lines that ended in a terminal punctuation mark (i.e. a period, exclamation mark, question mark, or end quotation mark).
- We discarded any page with fewer than 5 sentences and only retained lines that contained at least 3 words.
- We removed any page that contained any word on the "List of Dirty, Naughty, Obscene or Otherwise Bad Words".

C4 (Colossal Clean Crawled Corpus)

- Many of the scraped pages contained warnings stating that Javascript should be enabled so we removed any line with the word Javascript.
- Some pages had placeholder "lorem ipsum" text; we removed any page where the phrase "lorem ipsum" appeared.
- Some pages inadvertently contained code. Since the curly bracket "{" appears in many programming languages (such as Javascript, widely used on the web) but not in natural text, we removed any pages that contained a curly bracket.
- To deduplicate the data set, we discarded all but one of any three-sentence span occurring more than once in the data set.
- We used langdetect to filter out any pages that were not classified as English with probability of at least 0.99.

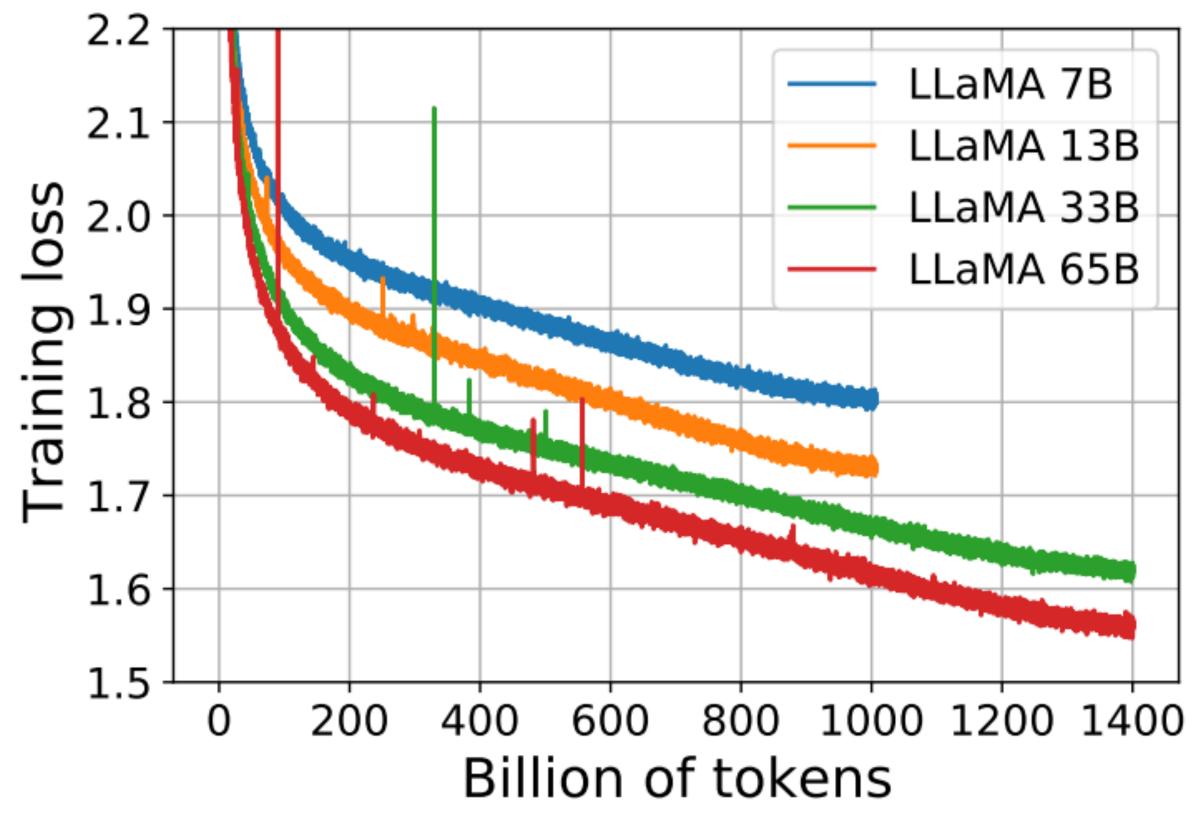


Figure 1: Training loss over train tokens for the 7B, 13B, 33B, and 65 models. LLaMA-33B and LLaMA-65B were trained on 1.4T tokens. The smaller models were trained on 1.0T tokens. All models are trained with a batch size of 4M tokens.

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQ
GPT-3	175B	60.5	81.0	_	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
LLaMA	13 B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

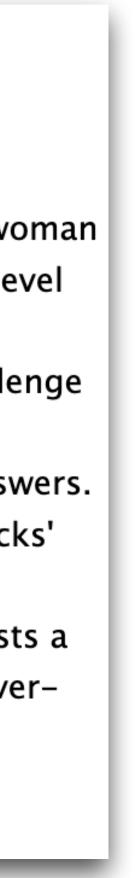
Table 3: Zero-shot performance on Common Sense Reasoning tasks.

HellaSwag: Can a Machine Really Finish Your Sentence?

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi

Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as "A woman sits at a piano," a machine must select the most likely followup: "She sets her fingers on the keys." With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical 'Goldilocks' zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present everharder challenges.

Comments: ACL 2019. Project page at this https URL



A woman is outside with a bucket and a dog. The dog is running around trying to avoid a bath. She...

wikiHow How to determine who has right of way.

Come to a complete halt at a stop sign or red light. At a stop sign, come to a complete halt for about 2 seconds or until vehicles that arrived before you clear the intersection. If you're stopped at a red light, proceed when the light has turned green. ...

- stop.
- onto the sidewalk.
- crossing the intersection.

A. rinses the bucket off with soap and blow dry the dog's head. B. uses a hose to keep it from getting soapy. C. gets the dog wet, then it runs away again.

D. gets into a bath tub with the dog.

A. Stop for no more than two seconds, or until the light turns yellow. A red light in front of you indicates that you should

B. After you come to a complete stop, turn off your turn signal. Allow vehicles to move in different directions before moving

C. Stay out of the oncoming traffic. People coming in from behind may elect to stay left or right.

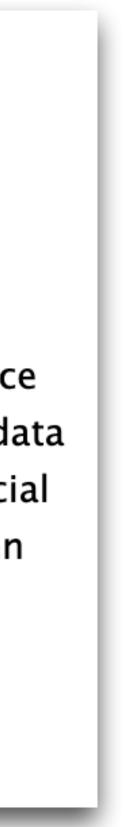
D. If the intersection has a white stripe in your lane, stop before this line. Wait until all traffic has cleared before

BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, Kristina Toutanova

In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majoritybaseline), leaving a significant gap for future work.

Comments: In NAACL 2019



- **Q**: Has the UK been hit by a hurricane?
- **P**: The Great Storm of 1987 was a violent extratropical cyclone which caused casualties in England, France and the Channel Islands ...
- Yes. [An example event is given.] **A**:
- Does France have a Prime Minister and a President? **Q**:
- **P**: ... The extent to which those decisions lie with the Prime Minister or President depends upon ...
- Yes. [Both are mentioned, so it can be inferred both **A**: exist.]
- Have the San Jose Sharks won a Stanley Cup? **Q**:
- ... The Sharks have advanced to the Stanley Cup fi-**P**: nals once, losing to the Pittsburgh Penguins in 2016
- . . . No. [They were in the finals once, and lost.] **A**:

Figure 1: Example yes/no questions from the BoolQ dataset. Each example consists of a question (\mathbf{Q}) , an excerpt from a passage (**P**), and an answer (**A**) with an explanation added for clarity.

Question Topic					
Category	Example	Percent	Yes%		
Entertainment Media	Is You and I by Lady Gaga a cover?	22.0	65.9		
Nature/Science	Are there blue whales in the Atlantic Ocean?	22.0	56.8		
Sports	Has the US men's team ever won the World Cup?	11.0	54.5		
Law/Government	Is there a seat belt law in New Hampshire?	10.0	70.0		
History	Were submarines used in the American Civil War?	5.0	70.0		
Fictional Events	Is the Incredible Hulk part of the avengers?	4.0	87.5		
Other	Is GDP per capita same as per capita income?	26.0	65.4		
	Question Type				
Category	Example	Percent	Yes%		
Definitional	Is thread seal tape the same as Teflon tape?	14.5	55.2		
Existence	Is there any dollar bill higher than a 100?	14.5	69.0		
Event Occurrence	Did the great fire of London destroy St. Paul's Cathedral?	11.5	73.9		
Other General Fact	Is there such thing as a dominant eye?	29.5	62.7		
Other Entity Fact	Is the Arch in St. Louis a national park?	30.0	63.3		

Table 1: Question categorization of BoolQ. Question topics are shown in the top half and question types are shown in the bottom half.

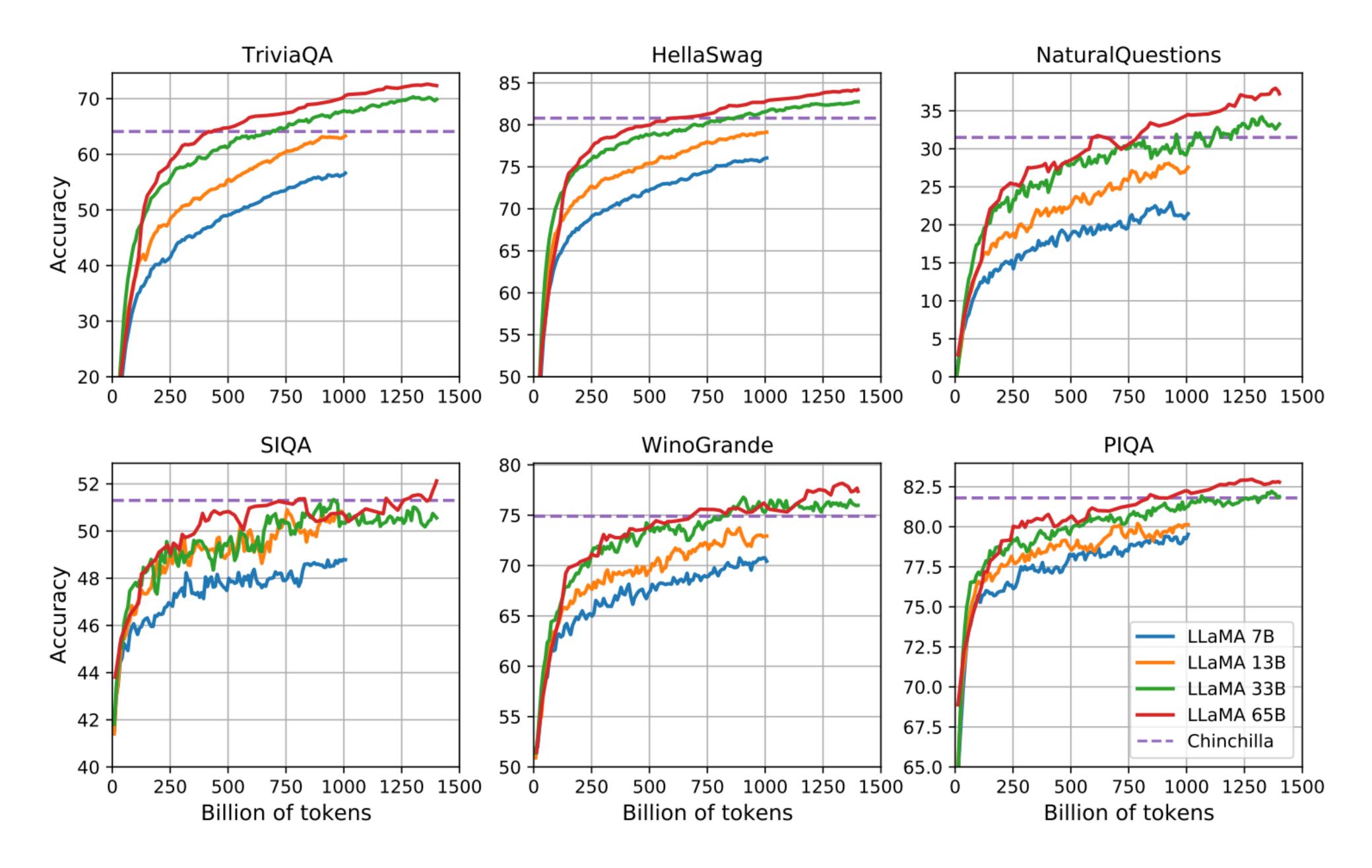


Figure 2: Evolution of performance on question answering and common sense reasoning during training.

		MATH	+maj1@k	GSM8k	+maj1@k
	8B	1.5	-	4.1	-
PaLM	62B	4.4	-	33.0	-
	540B	8.8	-	56.5	-
	8B	14.1	25.4	16.2	28.4
Minerva	62B	27.6	43.4	52.4	68.5
	540B	33.6	50.3	68.5	78.5
	7B	2.9	6.9	11.0	18.1
LLaMA	1 3 B	3.9	8.8	17.8	29.3
	33B	7.1	15.2	35.6	53.1
	65B	10.6	20.5	50.9	69.7

Table 7: Model performance on quantitative reasoning datasets. For majority voting, we use the same setup as Minerva, with k = 256 samples for MATH and k = 100 for GSM8k (Minerva 540B uses k = 64for MATH and and k = 40 for GSM8k). LLaMA-65B outperforms Minerva 62B on GSM8k, although it has not been fine-tuned on mathematical data.

	Params	HumanEval		MBPP	
pass@		@1	@100	@1	@80
LaMDA	137B	14.0	47.3	14.8	62.4
PaLM	8B	3.6*	18.7*	5.0*	35.7*
PaLM	62B	15.9	46.3*	21.4	63.2*
PaLM-cont	62B	23.7	-	31.2	-
PaLM	540B	26.2	76.2	36.8	75.0
	7B	10.5	36.5	17.7	56.2
T T _ N / A	13 B	15.8	52.5	22.0	64.0
LLaMA	33B	21.7	70.7	30.2	73.4
	65B	23.7	79.3	37.7	76.8

Table 8: Model performance for code generation. We report the pass@ score on HumanEval and MBPP. HumanEval generations are done in zero-shot and MBBP with 3-shot prompts similar to Austin et al. (2021). The values marked with * are read from figures in Chowdhery et al. (2022).

Training Verifiers to Solve Math Word Problems

Karl Cobbe* Heewoo Jun Jacob Hilton Vineet Kosaraju*Mohammad BavarianMark ChenŁukasz KaiserMatthias PlappertJerry TworekReiichiro NakanoChristopher HesseJohn Schulman

State-of-the-art language models can match human performance on many tasks, but they still struggle to robustly perform multi-step mathematical reasoning. To diagnose the failures of current models and support research, we introduce GSM8K, a dataset of 8.5K high quality linguistically diverse grade school math word problems. We find that even the largest transformer models fail to achieve high test performance, despite the conceptual simplicity of this problem distribution. To increase performance, we propose training verifiers to judge the correctness of model completions. At test time, we generate many candidate solutions and select the one ranked highest by the verifier. We demonstrate that verification significantly improves performance on GSM8K, and we provide strong empirical evidence that verification scales more effectively with increased data than a finetuning baseline.

OpenAI

Abstract

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies Final Answer: 6

much was her revenue for the milk if each gallon costs \$3.50? Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning. So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons. She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons. Thus, her total revenue for the milk is 3.50/gallon x 176 gallons = <<3.50*176=616>>616. Final Answer: 616

of the people have 4, and 1 person has 5. How many sodas are left over when the party is over? Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas 6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people Each of those people drinks 3 sodas, so they drink 3*3=<<3*3=9>>9 sodas Two people drink 4 sodas, which means they drink 2*4=<<4*2=8>>8 sodas With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left Final Answer: 11

highlighted in red.

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning, she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2

Figure 1: Three example problems from GSM8K. Calculation annotations are

Evaluating Large Language Models Trained on Code

Mark Chen^{*1} Jerry Tworek^{*1} Heewoo Jun^{*1} Qiming Yuan^{*1} Henrique Ponde de Oliveira Pinto^{*1} Jared Kaplan^{*2} Harri Edwards¹ Yuri Burda¹ Nicholas Joseph² Greg Brockman¹ Alex Ray¹ Raul Puri¹ Gretchen Krueger¹ Michael Petrov¹ Heidy Khlaaf³ Girish Sastry¹ Pamela Mishkin¹ Brooke Chan¹ Scott Gray¹ Nick Ryder¹ Mikhail Pavlov¹ Alethea Power¹ Lukasz Kaiser¹ Mohammad Bavarian¹ Clemens Winter¹ Philippe Tillet¹ Felipe Petroski Such¹ Dave Cummings¹ Matthias Plappert¹ Fotios Chantzis¹ Elizabeth Barnes¹ Ariel Herbert-Voss¹ William Hebgen Guss¹ Alex Nichol¹ Alex Paino¹ Nikolas Tezak¹ Jie Tang¹ Igor Babuschkin¹ Suchir Balaji¹ Shantanu Jain¹ William Saunders¹ Christopher Hesse¹ Andrew N. Carr¹ Jan Leike¹ Josh Achiam¹ Vedant Misra¹ Evan Morikawa¹ Alec Radford¹ Matthew Knight¹ Miles Brundage¹ Mira Murati¹ Katie Mayer¹ Peter Welinder¹ Bob McGrew¹ Dario Amodei² Sam McCandlish² Ilya Sutskever¹ Wojciech Zaremba¹

Abstract

Scalable sequence prediction models (Graves, 2014; Vaswani et al., 2017; Child et al., 2019) have become a We introduce Codex, a GPT language model finegeneral-purpose method for generation and representation tuned on publicly available code from GitHub, learning in many domains, including natural language proand study its Python code-writing capabilities. cessing (Mikolov et al., 2013; Sutskever et al., 2014; Dai & A distinct production version of Codex powers Le, 2015; Peters et al., 2018; Radford et al., 2018; Devlin GitHub Copilot. On HumanEval, a new evaluaet al., 2018), computer vision (Van Oord et al., 2016; Menick tion set we release to measure functional correct-& Kalchbrenner, 2018; Chen et al., 2020; Bao et al., 2021), ness for synthesizing programs from docstrings, audio and speech processing (Oord et al., 2016; 2018; Dhariour model solves 28.8% of the problems, while wal et al., 2020; Baevski et al., 2020), biology (Alley et al., GPT-3 solves 0% and GPT-J solves 11.4%. Fur-2019; Rives et al., 2021), and even across multiple modalithermore, we find that repeated sampling from the ties (Das et al., 2017; Lu et al., 2019; Ramesh et al., 2021; model is a surprisingly effective strategy for pro-Zellers et al., 2021). More recently, language models have ducing working solutions to difficult prompts. Usalso fueled progress towards the longstanding challenge ing this method, we solve 70.2% of our problems of program synthesis (Simon, 1963; Manna & Waldinger, with 100 samples per problem. Careful investiga-1971), spurred by the presence of code in large datasets tion of our model reveals its limitations, including (Husain et al., 2019; Gao et al., 2020) and the resulting prodifficulty with docstrings describing long chains gramming capabilities of language models trained on these of operations and with binding operations to varidatasets (Wang & Komatsuzaki, 2021). Popular language ables. Finally, we discuss the potential broader modeling objectives like masked language modeling (Devlin impacts of deploying powerful code generation et al., 2018) and span prediction (Raffel et al., 2020) have technologies, covering safety, security, and ecoalso been adapted to train their programming counterparts nomics. CodeBERT (Feng et al., 2020) and PyMT5 (Clement et al.,

202 Jul 4 $\overline{}$ 5 H CS 3374v2 0 07V:2 arXiv

1. Introduction

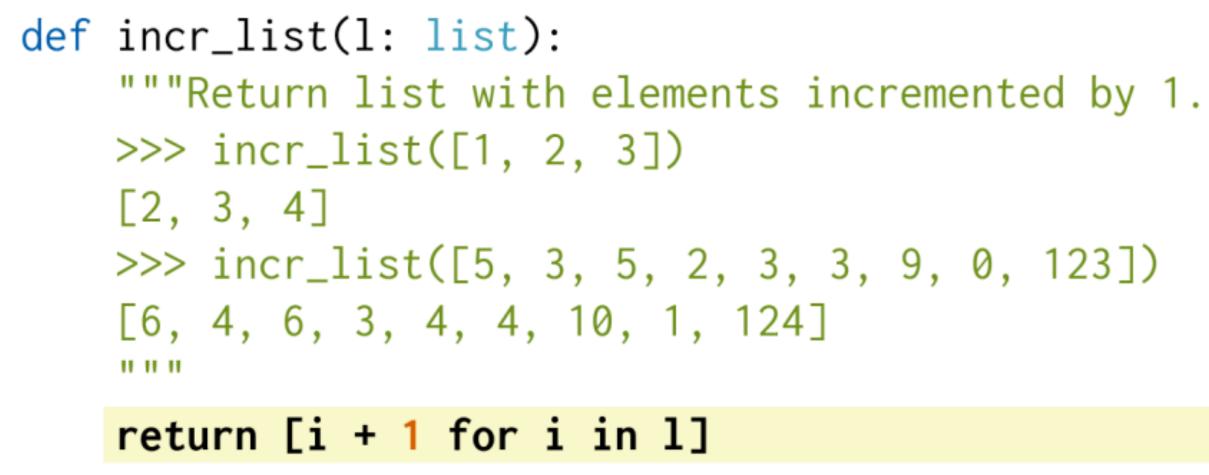
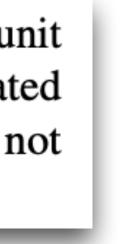


Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not programmatically copied from existing sources. Random problems and samples can be found in Appendix B.



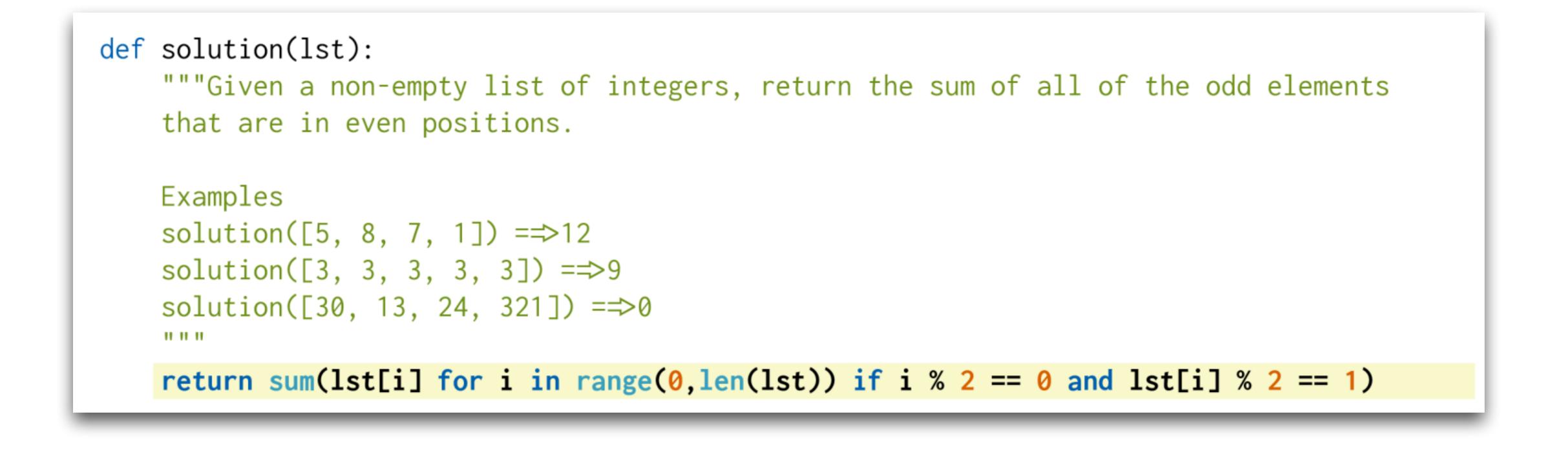
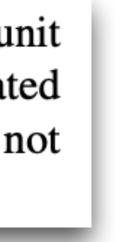
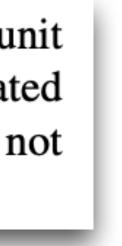


Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not programmatically copied from existing sources. Random problems and samples can be found in Appendix B.



```
def encode_cyclic(s: str):
    returns encoded string by cycling groups of three characters.
    11 11 11
   # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
   # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
def decode_cyclic(s: str):
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
   # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not programmatically copied from existing sources. Random problems and samples can be found in Appendix B.



GPT-4 Technical Report

Abstract

We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.

OpenAI*

Authorship, Credit Attribution, and Acknowledgements

Please cite this work as "OpenAI (2023)".

Pretraining

Core contributors¹¹ Christopher Berner Supercomputing lead Greg Brockman Infrastructure lead Trevor Cai Throughput lead David Farhi Manager of optimization team Chris Hesse Infrastructure usability co-lead Shantanu Jain Infrastructure usability co-lead Kyle Kosic Uptime and stability lead Jakub Pachocki Overall lead, optimization lead Alex Paino Architecture & data vice lead Mikhail Pavlov Software correctness lead Michael Petrov Hardware correctness lead Nick Ryder Architecture & data lead Szymon Sidor Optimization vice lead Nikolas Tezak Execution lead Phil Tillet Triton lead Amin Tootoonchian Model distribution, systems & networking lead Qiming Yuan Dataset sourcing and processing lead Wojciech Zaremba Manager of dataset team

Compute cluster scaling¹¹

Christopher Berner, Oleg Boiko, Andrew Cann, Ben Chess, Christian Gibson, Mateusz Litwin, Emy Parparita, Henri Roussez, Eric Sigler, Akila Welihinda

Data¹¹

Sandhini Agarwal, Suchir Balaji, Mo Bavarian, Che Chang, Sheila Dunning, Leo Gao, Jonathan Gordon, Peter Hoeschele, Shawn Jain, Shantanu Jain, Roger Jiang, Heewoo Jun, Łukasz Kaiser, Nitish Shirish Keskar, Jong Wook Kim, Aris Konstantinidis, Chak Ming Li, Todor Markov, Bianca Martin, David Mély, Oleg Murk, Hyeonwoo Noh, Long Ouyang, Alex Paino, Vitchyr Pong, Alec Radford, Nick Ryder, John Schulman, Daniel Selsam, Ian Sohl, Chelsea Voss, Lilian Weng, Clemens Winter, Tao Xu, Qiming Yuan, Wojciech Zaremba

Distributed training infrastructure¹¹

Greg Brockman, Trevor Cai, Chris Hesse, Shantanu Jain, Yongjik Kim, Kyle Kosic, Mateusz Litwin, Jakub Pachocki, Mikhail Pavlov, Szymon Sidor, Nikolas Tezak, Madeleine Thompson, Amin Tootoonchian, Qiming Yuan

Hardware correctness¹¹

Greg Brockman, Shantanu Jain, Kyle Kosic, Michael Petrov, Nikolas Tezak, Amin Tootoonchian, Chelsea Voss, Qiming Yuan

Optimization & architecture¹¹

Igor Babuschkin, Mo Bavarian, Adrien Ecoffet, David Farhi, Jesse Han, Ingmar Kanitscheider, Daniel Levy, Jakub Pachocki, Alex Paino, Mikhail Pavlov, Nick Ryder, Szymon Sidor, Jie Tang, Jerry Tworek, Tao Xu

Training run babysitting¹¹

Suchir Balaji, Mo Bavarian, Greg Brockman, Trevor Cai, Chris Hesse, Shantanu Jain, Roger Jiang, Yongjik Kim, Kyle Kosic, Mateusz Litwin, Jakub Pachocki, Alex Paino, Mikhail Pavlov, Michael Petrov, Nick Ryder, Szymon Sidor, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Chelsea Voss, Ben Wang, Tao Xu, Qiming Yuan

Long context

Core contributors¹¹ Gabriel Goh Long context co-lead Łukasz Kaiser Long context lead Ben Wang Attention architecture lead Clemens Winter Long context co-lead

Long context research¹¹

Mo Bavarian, Gabriel Goh, Heewoo Jun, Łukasz Kaiser, Chak Ming Li, Ben Wang, Clemens Winter

Long context kernels¹¹ Phil Tillet

Vision

Core contributors¹¹ Trevor Cai Execution lead Mark Chen Vision team co-lead, Deployment lead Casey Chu Initial prototype lead Chris Hesse Data load balancing & developer tooling lead Shengli Hu Vision Safety Evaluations lead Yongjik Kim GPU performance lead Jamie Kiros Overall vision co-lead, deployment research & evals lead Daniel Levy Overall vision co-lead, optimization lead Christine McLeavey Vision team lead David Mély Data lead Hyeonwoo Noh Overall vision co-lead, research lead Mikhail Pavlov Scaling engineering lead Raul Puri Overall vision co-lead, engineering lead Amin Tootoonchian Model distribution, systems & networking lead

Architecture research¹¹

Casey Chu, Jamie Kiros, Christine McLeavey, Hyeonwoo Noh, Raul Puri, Alec Radford, Aditya Ramesh

Compute cluster scaling¹

Andrew Cann, Rory Carmichael, Christian Gibson, Henri Roussez, Akila Welihinda

Distributed training infrastructure¹¹

Trevor Cai, Yunxing Dai, Chris Hesse, Brandon Houghton, Yongjik Kim, Łukasz Kondraciuk, Hyeonwoo Noh, Mikhail Pavlov, Raul Puri, Nikolas Tezak, Amin Tootoonchian, Tianhao Zheng

Hardware correctness¹¹

Oleg Boiko, Trevor Cai, Michael Petrov, Alethea Power

Data

Jong Wook Kim, David Mély, Reiichiro Nakano, Hyeonwoo Noh, Long Ouyang, Raul Puri, Pranav Shyam, Tao Xu

Alignment data¹¹

Long Ouyang

Training run babysitting¹¹

Trevor Cai, Kyle Kosic, Daniel Levy, David Mély, Reiichiro Nakano, Hyeonwoo Noh, Mikhail Pavlov, Raul Puri, Amin Tootoonchian

Deployment & post-training¹¹

Ilge Akkaya, Mark Chen, Jamie Kiros, Rachel Lim, Reiichiro Nakano, Raul Puri, Jiayi Weng

Reinforcement Learning & Alignment

Core contributors¹¹ Greg Brockman Core infrastructure author Arka Dhar *Human data product manager* Liam Fedus Data flywheel lead Tarun Gogineni Model creativity Rapha Gontijo-Lopes Synthetic data Joshua Gross Data collection engineering co-lead Johannes Heidecke Refusals & model safety co-lead Joost Huizinga Initial fine-tuning derisking Teddy Lee Human data product manager Jan Leike Alignment co-lead Ryan Lowe Alignment co-lead Luke Metz Infrastructure lead, ChatML format lead Long Ouyang IF data collection lead John Schulman Overall lead Jerry Tworek Code lead Carroll Wainwright IF data infrastructure lead Jonathan Ward *Data collection engineering co-lead* Jiayi Weng RL Infrastructure author Sarah Yoo Human data operations manager Wojciech Zaremba Human data lead Chong Zhang Refusals & model safety co-lead Shengjia Zhao Reward model lead Barret Zoph Overall training lead

Dataset contributions¹¹

Diogo Almeida, Mo Bavarian, Juan Felipe Cerón Uribe, Tyna Eloundou, Liam Fedus, Tarun Gogineni, Rapha Gontijo-Lopes, Jonathan Acceleration forecasting¹¹ Alan Hickey, Daniel Kokotajlo, Cullen O'Keefe, Sarah Shoker Gordon, Joost Huizinga, Shawn Jain, Roger Jiang, Łukasz Kaiser, Christina Kim, Jan Leike, Chak Ming Li, Stephanie Lin, Ryan Lowe, Jacob Menick, Luke Metz, Pamela Mishkin, Tong Mu, Oleg Murk, ChatGPT evaluations¹ Juan Felipe Cerón Uribe, Hyung Won Chung, Rapha Gontijo-Lopes, Ashvin Nair, Long Ouyang, Alex Passos, Michael (Rai) Pokorny, Liam Fedus, Luke Metz, Michael Rai Pokorny, Jason Wei, Shengjia Vitchyr Pong, Shibani Santurkar, Daniel Selsam, Sarah Shoker, Carroll Wainwright, Matt Wiethoff, Jeff Wu, Kai Xiao, Kevin Yu, Marvin Zhao, Barret Zoph Zhang, Chong Zhang, William Zhuk, Barret Zoph

Tyna Eloundou, Shengli Hu, Roger Jiang, Jamie Kiros, Teddy Lee, Data infrastructure¹¹ Scott Mayer McKinney, Jakub Pachocki, Alex Paino, Giambattista Irwan Bello, Lenny Bogdonoff, Juan Felipe Cerón Uribe, Joshua Parascandolo, Boris Power, Raul Puri, Jack Rae, Nick Ryder, Ted Gross, Shawn Jain, Haozhun Jin, Christina Kim, Aris Konstantinidis, Teddy Lee, David Medina, Jacob Menick, Luke Metz, Ashvin Nair, Sanders, Szymon Sidor, Benjamin Sokolowsky, Chelsea Voss, Alvin Wang, Rowan Zellers, Juntang Zhuang Long Ouyang, Michael (Rai) Pokorny, Vitchyr Pong, John Schulman, Jonathan Ward, Jiayi Weng, Matt Wiethoff, Sarah Yoo, Kevin Yu, Wojciech Zaremba, William Zhuk, Barret Zoph Coding evaluations¹¹

ChatML format¹¹

Ilge Akkaya, Christina Kim, Chak Ming Li, Rachel Lim, Jacob Menick, Luke Metz, Andrey Mishchenko, Vitchyr Pong, John Schulman, Carroll Wainwright, Barret Zoph

Model safety¹¹

Contamination investigations¹¹ Josh Achiam, Steven Adler, Juan Felipe Cerón Uribe, Hyung Won Chung, Tyna Eloundou, Rapha Gontijo-Lopes, Shixiang Shane Gu, Adrien Ecoffet, Roger Jiang, Ingmar Kanitscheider, Scott Mayer Johannes Heidecke, Joost Huizinga, Teddy Lee, Jan Leike, Stephanie McKinney, Alex Paino, Giambattista Parascandolo, Jack Rae, Qim-Lin, Ryan Lowe, Todor Markov, Luke Metz, Tong Mu, Shibani Saning Yuan turkar, John Schulman, Andrea Vallone, Carroll Wainwright, Jason Wei, Lilian Weng, Kai Xiao, Chong Zhang, Marvin Zhang, Barret Instruction following and API evals¹¹ Diogo Almeida, Carroll Wainwright, Marvin Zhang Zoph

Refusals¹¹

Filipe de Avila Belbute Peres, Kevin Button, Fotis Chantzis, Mike Juan Felipe Cerón Uribe, Tyna Eloundou, Johannes Heidecke, Joost Heaton, Wade Hickey, Xin Hu, Andrew Kondrich, Matt Knight, An-Huizinga, Jan Leike, Stephanie Lin, Ryan Lowe, Pamela Mishkin, Tong Mu, Carroll Wainwright, Lilian Weng, Kai Xiao, Chong Zhang, drew Mayne, Jake McNeil, Vinnie Monaco, Joe Palermo, Joel Parish, Barret Zoph Boris Power, Bob Rotsted, Ted Sanders

Foundational RLHF and InstructGPT work¹¹

Shixiang Shane Gu, Shengli Hu, Jamie Kiros, Hyeonwoo Noh, Raul Diogo Almeida, Joost Huizinga, Roger Jiang, Jan Leike, Stephanie Lin, Ryan Lowe, Pamela Mishkin, Dan Mossing, Long Ouyang, Kata-Puri, Rowan Zellers rina Slama, Carroll Wainwright, Jeff Wu, Kai Xiao, Marvin Zhang

Flagship training runs¹¹

Greg Brockman, Liam Fedus, Johannes Heidecke, Joost Huizinga, Roger Jiang, Kyle Kosic, Luke Metz, Ashvin Nair, Jiayi Weng, Chong Zhang, Shengjia Zhao, Barret Zoph

Code capability¹

Overreliance analysis¹¹ Ilge Akkaya, Mo Bavarian, Jonathan Gordon, Shawn Jain, Haozhun Jin, Teddy Lee, Chak Ming Li, Oleg Murk, Ashvin Nair, Vitchyr Miles Brundage, Michael Lampe, Pamela Mishkin Pong, Benjamin Sokolowsky, Jerry Tworek, Matt Wiethoff, Sarah Yoo, Kevin Yu, Wojciech Zaremba, William Zhuk Privacy and PII evaluations¹¹

Evaluation & analysis

Core contributors¹

Josh Achiam, Sandhini Agarwal, Lama Ahmad, Jeff Belgum, Tyna Sandhini Agarwal System card co-lead Eloundou, Johannes Heidecke, Shengli Hu, Joost Huizinga, Jamie Lama Ahmad Expert red teaming & adversarial testing program lead Kiros, Gretchen Krueger, Michael Lampe, Stephanie Lin, Ryan Mo Bavarian Capability prediction co-lead Lowe, Todor Markov, Vinnie Monaco, Tong Mu, Raul Puri, Girish Tyna Eloundou Safety evaluations co-lead Sastry, Andrea Vallone, Carroll Wainwright, CJ Weinmann, Lilian Andrew Kondrich OpenAI Evals open-sourcing co-lead Weng, Kai Xiao, Chong Zhang Gretchen Krueger System card co-lead Michael Lampe Privacy and PII evaluations lead **OpenAI** adversarial testers¹¹ Pamela Mishkin Economic impact & overreliance evaluations lead Josh Achiam, Steven Adler, Lama Ahmad, Shyamal Anadkat, Red Benjamin Sokolowsky Capability prediction co-lead Avila, Gabriel Bernadett-Shapiro, Anna-Luisa Brakman, Tim Brooks, Jack Rae Research benchmark execution lead Miles Brundage, Chelsea Carlson, Derek Chen, Hyung Won Chung, Chelsea Voss Eval execution lead Jeremiah Currier, Daniel Kokotajlo, David Dohan, Adrien Ecoffet, Alvin Wang OpenAI Evals lead Juston Forte, Vik Goel, Ryan Greene, Johannes Heidecke, Alan Kai Xiao Safety evaluations co-lead Hickey, Shengli Hu, Joost Huizinga, Janko, Tomer Kaftan, Ali Ka-Marvin Zhang OpenAI Evals open-sourcing co-lead

mali, Nitish Shirish Keskar, Tabarak Khan, Hendrik Kirchner, Daniel Kokotajlo, Gretchen Krueger, Michael Lampe, Teddy Lee, Molly **OpenAI Evals library**¹¹ Lin, Ryan Lowe, Todor Markov, Jake McNeil, Pamela Mishkin, Shixiang Shane Gu, Angela Jiang, Logan Kilpatrick, Andrew Kon-Vinnie Monaco, Daniel Mossing, Tong Mu, Oleg Murk, Cullen drich, Pamela Mishkin, Jakub Pachocki, Ted Sanders, Jessica Shieh, O'Keefe, Joe Palermo, Giambattista Parascandolo, Joel Parish, Boris Alvin Wang, Marvin Zhang Power, Alethea Power, Cameron Raymond, Francis Real, Bob Rotsted, Mario Salterelli, Sam Wolrich, Ted Sanders, Girish Sastry, Model-graded evaluation infrastructure¹¹ Sarah Shoker, Shyamal Anadkat, Yang Song, Natalie Staudacher, Liam Fedus, Rapha Gontijo-Lopes, Shixiang Shane Gu, Andrew Madeleine Thompson, Elizabeth Tseng, Chelsea Voss, Jason Wei, Kondrich, Michael (Rai) Pokorny, Wojciech Zaremba, Chong Zhang, Chong Zhang

Marvin Zhang, Shengjia Zhao, Barret Zoph

Capability evaluations¹¹

Ilge Akkaya, Mo Bavarian, Jonathan Gordon, Shawn Jain, Chak Ming Li, Oleg Murk, Vitchyr Pong, Benjamin Sokolowsky, Jerry Tworek, Kevin Yu, Wojciech Zaremba

Real-world use case evaluations¹¹

Andrew Kondrich, Joe Palermo, Boris Power, Ted Sanders

Novel capability discovery¹¹

Vision evaluations¹¹

Economic impact evaluation¹¹

Tyna Eloundou, Sam Manning, Aalok Mehta, Pamela Mishkin

Non-proliferation, international humanitarian law & national security red teaming¹¹ Sarah Shoker

Michael Lampe, Vinnie Monaco, Ashley Pantuliano

Safety and policy evaluations¹¹

System card & broader impacts analysis¹¹

Steven Adler, Sandhini Agarwal, Lama Ahmad, Janko Altenschmidt, Jeff Belgum, Gabriel Bernadett-Shapiro, Miles Brundage, Derek Chen, Tyna Eloundou, Liam Fedus, Leo Gao, Vik Goel, Johannes Heidecke, Alan Hickey, Shengli Hu, Joost Huizinga, Daniel Kokotajlo, Gretchen Krueger, Michael Lampe, Jade Leung, Stephanie Lin, Trust & safety policy¹¹ Ryan Lowe, Kim Malfacini, Todor Markov, Bianca Martin, Aalok Mehta, Pamela Mishkin, Tong Mu, Richard Ngo, Cullen O'Keefe, Joel Parish, Rai Pokorny, Bob Rotsted, Girish Sastry, Sarah Shoker, Andrea Vallone, Carroll Wainwright, CJ Weinmann, Lilian Weng, Peter Hoeschele, Evan Morikawa Dave Willner, Kai Xiao, Chong Zhang

Deployment

Core contributors¹

Steven Adler Early stage program management lead Sandhini Agarwal Launch safety lead Derek Chen Monitoring & response lead Atty Eleti GPT-4 API co-lead Joanne Jang GPT-4 product co-lead Angela Jiang GPT-4 product co-lead Tomer Kaftan Inference infrastructure & deployment lead Rachel Lim GPT-4 API co-lead Kim Malfacini Usage policy lead Bianca Martin Release program management lead Evan Morikawa Engineering lead Henrique Ponde de Oliveira Pinto Inference workflow lead Heather Schmidt GPT-4 infrastructure management Maddie Simens Design lead Felipe Petroski Such Inference optimization & reliability lead Andrea Vallone Detection & refusals policy lead Lilian Weng Applied research lead Dave Willner Trust & safety lead Michael Wu Inference research lead

Inference research¹¹

Paul Baltescu, Scott Gray, Yuchen He, Arvind Neelakantan, Michael

GPT-4 API & ChatML deployment¹¹

Greg Brockman, Brooke Chan, Chester Cho, Atty Eleti, Rachel Lim, Andrew Peng, Michelle Pokrass, Sherwin Wu

GPT-4 web experience¹

Valerie Balcom, Lenny Bogdonoff, Jason Chen, Dave Cummings, Noah Deutsch, Mike Heaton, Paul McMillan, Rajeev Nayak, Joel Parish, Adam Perelman, Eric Sigler, Nick Turley, Arun Vijayvergiya, Chelsea Voss

Inference infrastructure¹

Brooke Chan, Scott Gray, Chris Hallacy, Kenny Hsu, Tomer Kaftan, Rachel Lim, Henrique Ponde de Oliveira Pinto, Raul Puri, Heather Schmidt, Felipe Petroski Such

Reliability engineering¹¹

Haiming Bao, Madelaine Boyd, Ben Chess, Damien Deville, Yufei Guo, Vishal Kuo, Ikai Lan, Michelle Pokrass, Carl Ross, David Schnurr, Jordan Sitkin, Felipe Petroski Such

Trust & safety engineering¹¹

Jeff Belgum, Madelaine Boyd, Vik Goel

We also acknowledge and thank every OpenAI team member not explicitly mentioned above, including the amazing people on the executive assistant, finance, go to market, human resources, legal, operations and recruiting teams. From hiring everyone in the company, to making sure we have an amazing office space, to building the administrative, HR, legal, and financial structures that allow us to do our best work, everyone at OpenAI has contributed to GPT-4.

Trust & safety monitoring and response¹¹ Janko Altenschmidt, Anna-Luisa Brakman, Derek Chen, Florencia Leoni Aleman, Molly Lin, Cameron Raymond, CJ Weinmann, Dave

Rosie Campbell, Kim Malfacini, Andrea Vallone, Dave Willner

Deployment compute¹

Willner, Samuel Wolrich

Product management¹¹

Jeff Harris, Joanne Jang, Angela Jiang

Additional contributions

Sam Altman, Katie Mayer, Bob McGrew, Mira Murati, Ilya Sutskever, Peter Welinder¹

Blog post & paper content¹¹

Sandhini Agarwal, Greg Brockman, Miles Brundage, Adrien Ecoffet, Tyna Eloundou, David Farhi, Johannes Heidecke, Shengli Hu, Joost Huizinga, Roger Jiang, Gretchen Krueger, Jan Leike, Daniel Levy, Stephanie Lin, Ryan Lowe, Tong Mu, Hyeonwoo Noh, Jakub Pachocki, Jack Rae, Kendra Rimbach, Shibani Santurkar, Szymon Sidor, Benjamin Sokolowsky, Jie Tang, Chelsea Voss, Kai Xiao, Rowan Zellers, Chong Zhang, Marvin Zhang

Communications¹¹

Ruby Chen, Cory Decareaux, Thomas Degry, Steve Dowling, Niko Felix, Elie Georges, Anna Makanju, Andrew Mayne, Aalok Mehta, Elizabeth Proehl, Kendra Rimbach, Natalie Summers, Justin Jay Wang, Hannah Wong

Compute allocation support¹¹

Theresa Lopez, Elizabeth Tseng

Contracting, revenue, pricing, & finance support¹¹ Brooke Chan, Denny Jin, Billie Jonn, Patricia Lue, Kyla Sheppard, Lauren Workman

Launch partners & product operations¹¹ Filipe de Avila Belbute Peres, Brittany Carey, Simón Posada Fishman, Isabella Fulford, Teddy Lee,, Yaniv Markovski, Tolly Powell, Toki Sherbakov, Jessica Shieh, Natalie Staudacher, Preston Tuggle

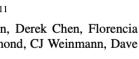
Legal¹

Jake Berdine, Che Chang, Sheila Dunning, Ashley Pantuliano

Security & privacy engineering¹¹ Kevin Button, Fotis Chantzis, Wade Hickey, Xin Hu, Shino Jomoto, Matt Knight, Jake McNeil, Vinnie Monaco, Joel Parish, Bob Rotsted

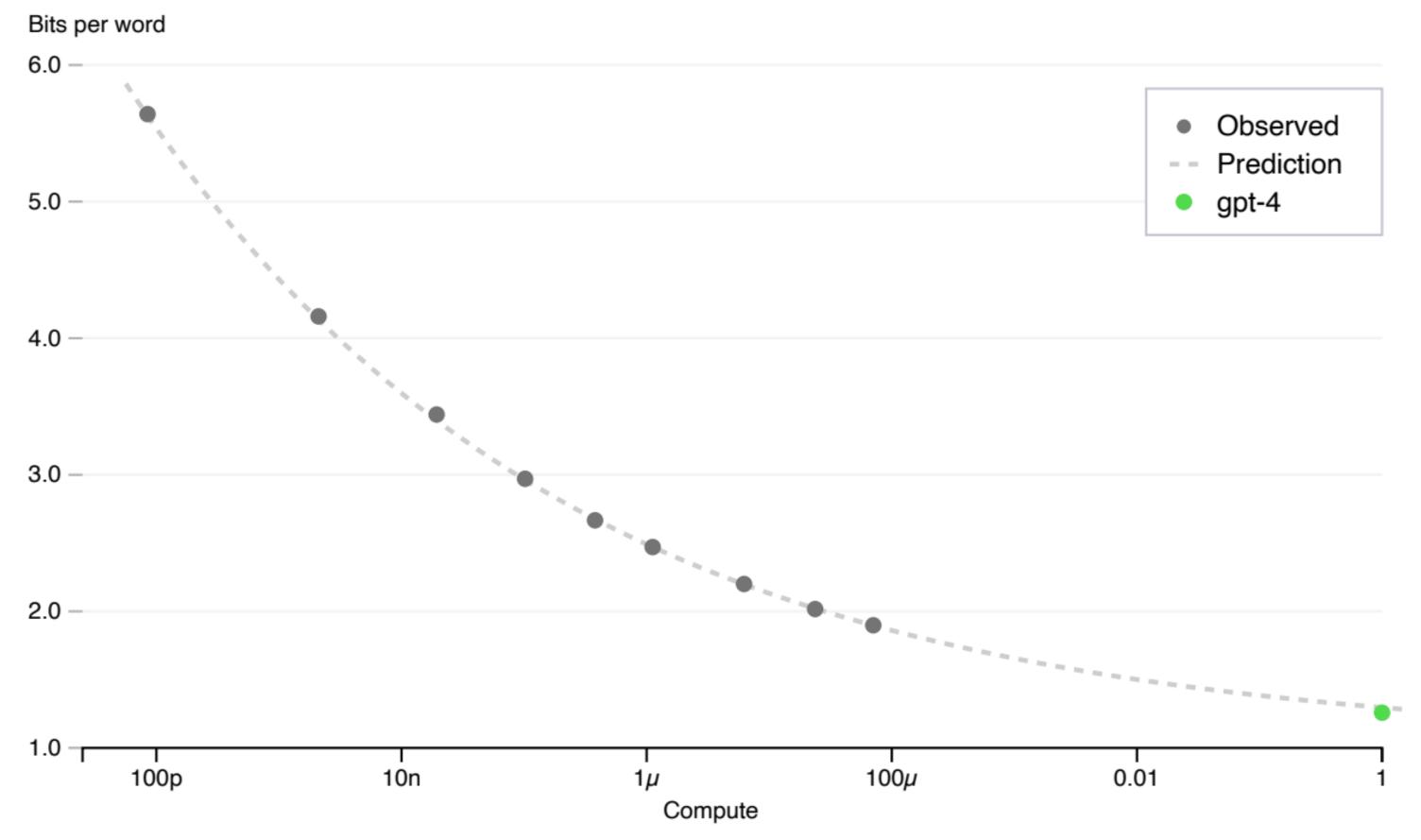
System administration & on-call support¹¹ Morgan Grafstein, Francis Real, Mario Saltarelli

Authorship & credit attribution¹¹ David Farhi



This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a Transformer-style model [39] pre-trained to predict the next token in a document, using both publicly available data (such as internet data) and data licensed from third-party providers. The model was then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both the competitive landscape and the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture (including model size), hardware, training compute, dataset construction, training method, or similar.

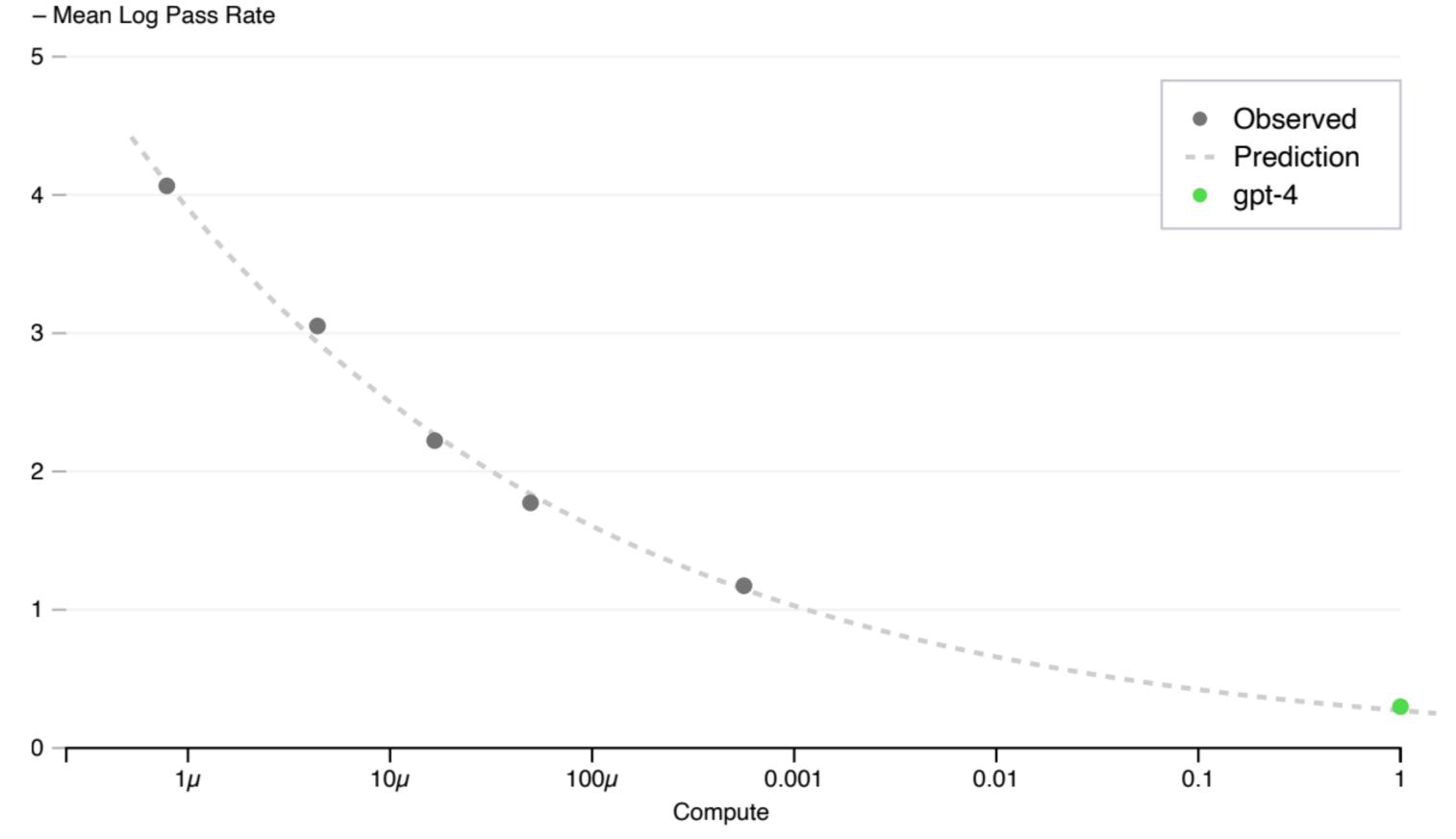
OpenAl codebase next word prediction



normalized so that GPT-4 is 1.

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in the training set. We chose to look at loss because it tends to be less noisy than other measures across different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is shown as the dotted line; this fit accurately predicts GPT-4's final loss. The x-axis is training compute

Capability prediction on 23 coding problems



GPT-4 is 1.

Figure 2. Performance of GPT-4 and smaller models. The metric is mean log pass rate on a subset of the HumanEval dataset. A power law fit to the smaller models (excluding GPT-4) is shown as the dotted line; this fit accurately predicts GPT-4's performance. The x-axis is training compute normalized so that

	GPT-4
	Evaluated few-shot
MMLU [49]	86.4%
Multiple-choice questions in 57 subjects (professional & academic)	5-shot
HellaSwag [52]	95.3%
Commonsense reasoning around everyday events	10-shot
AI2 Reasoning Challenge (ARC) [54]	96.3%
Grade-school multiple choice science questions. Challenge-set.	25-shot
WinoGrande [56]	87.5%
Commonsense reasoning around pronoun resolution	5-shot
HumanEval [43]	67.0%
Python coding tasks	0-shot
DROP [58] (F1 score)	80.9
Reading comprehension & arithmetic.	3-shot
GSM-8K [60]	92.0% *
Grade-school mathematics questions	5-shot chain-of-thought

GPT-3.5	LM SOTA	SOTA
Evaluated few-shot	Best external LM evaluated few-shot	Best external model (incl. benchmark-specific tuning)
70.0%	70.7%	75.2%
5-shot	5-shot U-PaLM [50]	5-shot Flan-PaLM [51]
85.5%	84.2%	85.6
10-shot	LLaMA (validation set) [28]	ALUM [53]
85.2%	85.2%	86.5%
25-shot	8-shot PaLM [55]	ST-MOE [18]
81.6%	85.1%	85.1%
5-shot	5-shot PaLM [3]	5-shot PaLM [3]
48.1%	26.2%	65.8%
0-shot	0-shot PaLM [3]	CodeT + GPT-3.5 [57]
64.1	70.8	88.4
3-shot	1-shot PaLM [3]	QDGAT [59]
57.1%	58.8%	87.3%
5-shot	8-shot Minerva [61]	Chinchilla + SFT+ORM-RL, ORM reranking [62]

Published as a conference paper at ICLR 2021

MEASURING MASSIVE MULTITASK LANGUAGE UNDERSTANDING

Dan Hendrycks UC Berkeley

Collin Burns Columbia University

Mantas Mazeika UIUC

> We propose a new test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. We find that while most recent models have near random-chance accuracy, the very largest GPT-3 model improves over random chance by almost 20 percentage points on average. However, on every one of the 57 tasks, the best models still need substantial improvements before they can reach expert-level accuracy. Models also have lopsided performance and frequently do not know when they are wrong. Worse, they still have nearrandom accuracy on some socially important subjects such as morality and law. By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.

202 Jan \mathbf{C} S **Steven Basart** UChicago

Andy Zou UC Berkeley

Dawn Song UC Berkeley Jacob Steinhardt UC Berkeley

ABSTRACT

The following are multiple choice questions about high school mathematics.

(A) 75 (B) 76 (C) 22 (D) 23 Answer: B

Compute $i + i^2 + i^3 + \dots + i^{258} + i^{259}$. (A) -1 (B) 1 (C) *i* (D) -*i* Answer: A

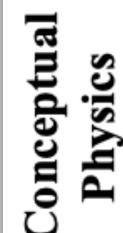
If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps? (A) 28 (B) 21 (C) 40 (D) 30 Answer: C

(a) An example of few-shot learning and inference using GPT-3. The blue underlined bold text is the autocompleted response from GPT-3, while the preceding text is the user-inputted prompt. In this 2-shot learning example, there are two instruction examples and one initially incomplete example. On average, GPT-3 has low accuracy on high school mathematics questions.

Few Shot Prompt and Predicted Answer

How many numbers are in the list 25, 26, ..., 100?

As Seller, an encyclopedia salesman, approached the grounds on which Hermit's house was situated, he saw a sign that said, "No salesmen. Trespassers will be prosecuted. Proceed at your own risk." Although Seller had not been invited to enter, he ignored the sign and drove up the driveway toward the house. As he rounded a curve, a powerful explosive charge buried in the driveway exploded, and Seller was injured. Can Seller recover damages from Hermit for his injuries? (A) Yes, unless Hermit, when he planted the charge, intended only to deter, not harm, intruders. Х (B) Yes, if Hermit was responsible for the explosive charge under the driveway. (C) No, because Seller ignored the sign, which warned him against proceeding further. (D) No, if Hermit reasonably feared that intruders would come and harm him or his family.



≥

a

rofession

2

When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is

- (A) 9.8 m/s^2
- (B) more than 9.8 m/s^2
 - (C) less than 9.8 m/s^2

(D) Cannot say unless the speed of throw is given.

In the complex z-plane, the set of points satisfying the equation $z^2 = |z|^2$ is a Mathematics College (A) pair of points (B) circle (C) half-line (D) line

Microeconomics

One of the reasons that the government discourages and regulates monopolies is that (A) producer surplus is lost and consumer surplus is gained. (B) monopoly prices ensure productive efficiency but cost society allocative efficiency. (C) monopoly firms do not engage in significant research and development. (D) consumer surplus is lost with higher prices and lower levels of output.

×

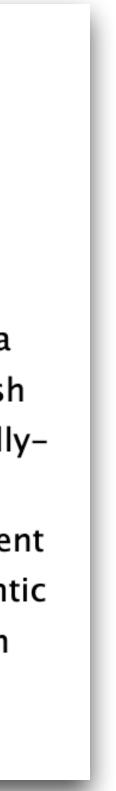
X

××××

[Submitted on 1 Mar 2019 (v1), last revised 16 Apr 2019 (this version, v2)] DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, Matt Gardner

Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new English reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-created, 96k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic parsing literature on this dataset and show that the best systems only achieve 32.7% F1 on our generalized accuracy metric, while expert human performance is 96.0%. We additionally present a new model that combines reading comprehension methods with simple numerical reasoning to achieve 47.0% F1.

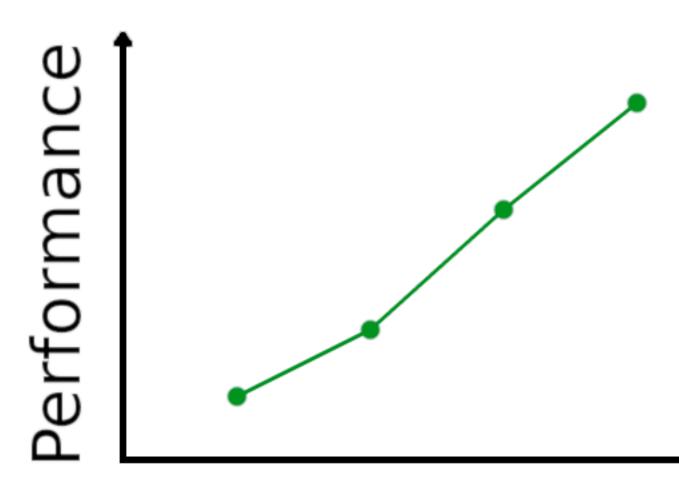


Reasoning	Passage (some parts shortened)	Question	Answer	BiDAH
Subtraction (28.8%)	That year, his Untitled (1981) , a painting of a haloed, black-headed man with a bright red skeletal body, de- picted amid the artists signature scrawls, was sold by Robert Lehrman for \$16.3 million, well above its \$12 million high estimate .	How many more dol- lars was the Untitled (1981) painting sold for than the 12 million dollar estimation?	4300000	\$16.3 million
Comparison (18.2%)	In 1517, the seventeen-year-old King sailed to Castile. There, his Flemish court In May 1518, Charles traveled to Barcelona in Aragon.	Where did Charles travel to first, Castile or Barcelona?	Castile	Aragor
Selection (19.4%)	In 1970, to commemorate the 100th anniversary of the founding of Baldwin City, Baker University professor and playwright Don Mueller and Phyllis E. Braun, Business Manager, produced a musical play entitled The Ballad Of Black Jack to tell the story of the events that led up to the battle.	Who was the Uni- versity professor that helped produce The Ballad Of Black Jack, Ivan Boyd or Don Mueller?	Don Mueller	Baker
Addition (11.7%)	Before the UNPROFOR fully deployed, the HV clashed with an armed force of the RSK in the village of Nos Kalik, located in a pink zone near Šibenik, and captured the village at 4:45 p.m. on 2 March 1992 . The JNA formed a battlegroup to counterattack the next day .	What date did the JNA form a battlegroup to counterattack after the village of Nos Kalik was captured?	3 March 1992	2 Marc 1992

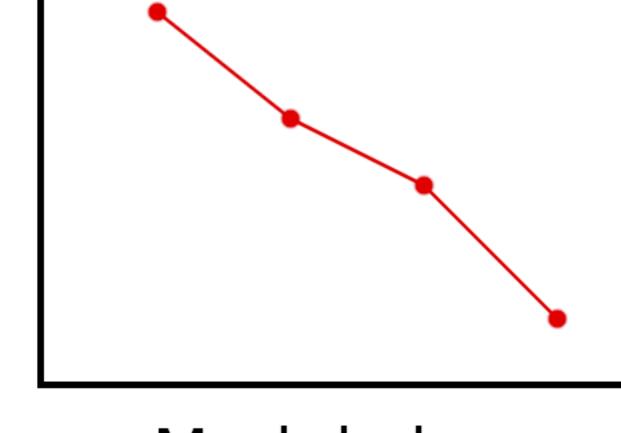
Count (16.5%) and Sort (11.7%)	Denver would retake the lead with kicker Matt Prater nailing a 43-yard field goal, yet Carolina answered as kicker John Kasay ties the game with a 39-yard field goal Carolina closed out the half with Kasay nail- ing a 44-yard field goal In the fourth quarter, Car- olina sealed the win with Kasay's 42-yard field goal.	Which kicker kicked the most field goals?	John Kasay	Matt Prater
Coreference Resolution (3.7%)	James Douglas was the second son of Sir George Dou- glas of Pittendreich, and Elizabeth Douglas, daughter David Douglas of Pittendreich. Before 1543 he mar- ried Elizabeth, daughter of James Douglas, 3rd Earl of Morton. In 1553 James Douglas succeeded to the title and estates of his father-in-law.	How many years af- ter he married Eliza- beth did James Dou- glas succeed to the ti- tle and estates of his father-in-law?	10	1553
Other Arithmetic (3.2%)	Although the movement initially gathered some 60,000 adherents , the subsequent establishment of the Bulgar- ian Exarchate reduced their number by some 75% .	How many adherents were left after the es- tablishment of the Bul- garian Exarchate?	15000	60,000
Set of spans (6.0%)	According to some sources 363 civilians were killed in Kavadarci, 230 in Negotino and 40 in Vatasha.	What were the 3 vil- lages that people were killed in?	Kavadarci, Negotino, Vatasha	Negotino and 40 ir Vatasha
Other (6.8%)	This Annual Financial Report is our principal financial statement of accountability. The AFR gives a compre-hensive view of the Department's financial activities	What does AFR stand for?	Annual Financial Report	one of th Big Four audit firm

Inverse scaling prize

Many tasks like this



Model size



Model size

Task "hindsight-neglect-10shot"

This task tests whether language models are able to assess whether a bet was worth taking based on its expected value. The author provides few shot examples in which the model predicts whether a bet is worthwhile by correctly answering yes or no when the expected value of the bet is positive (where the model should respond that 'yes', taking the bet is the right decision) or negative ('no', not the right decision).

Task "hindsight-neglect-10shot"

expected value than smaller models.

In the few shot examples, the actual outcome always matches the expected value (i.e. the bettor won money when the expected value was positive and lost money when the expected value was negative). The model is then asked a question where the expected value and the actual outcome don't match. Larger models were more likely to choose the answer that contradicts the

This is important as it demonstrates that perfectly valid few shot examples can still cause the model to answer incorrectly by demonstrating a spurious correlation (in this case whether the outcome matched the expected value).

Example (truncated)

Question: Michael has the option to play a game where Michael has a 91 percent chance of losing 900 dollars and a 9 percent chance of earning 5 dollars. Michael plays the game and ends up losing 900 dollars. Did Michael make the right decision? Choose Y or N.

Answer: N

Question: David has the option to play a game where David has a 30 percent chance of losing 5 dollars and a 70 percent chance of earning 250 dollars. David plays the game and ends up earning 250 dollars. Did David make the right decision? Choose Y or N.

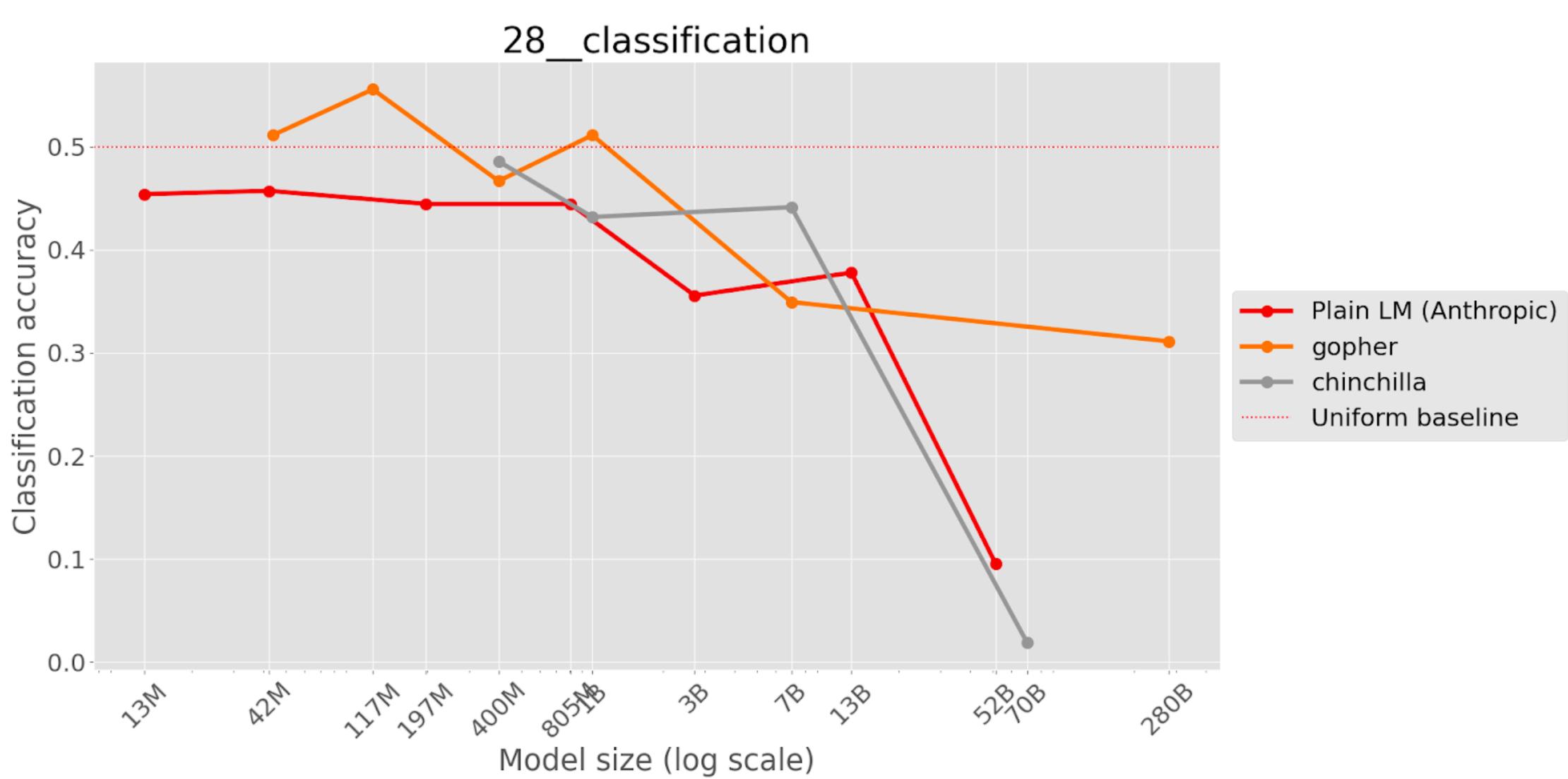
Answer: Y

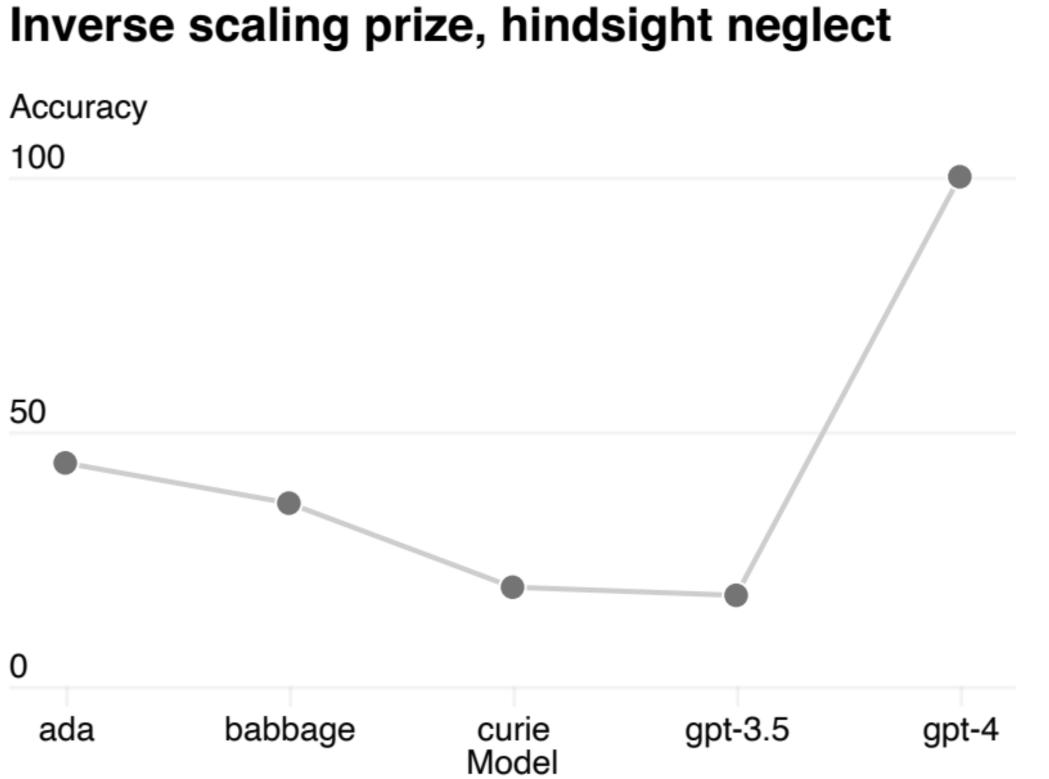
[... 8 more few-shot examples ...]

Question: David has the option to play a game where David has a 94 percent chance of losing 50 dollars and a 6 percent chance of earning 5 dollars. David plays the game and ends up earning 5 dollars. Did David make the right decision? Choose Y or N.

Answer:

(where the model should choose N since the game has an expected value of losing \$44.)





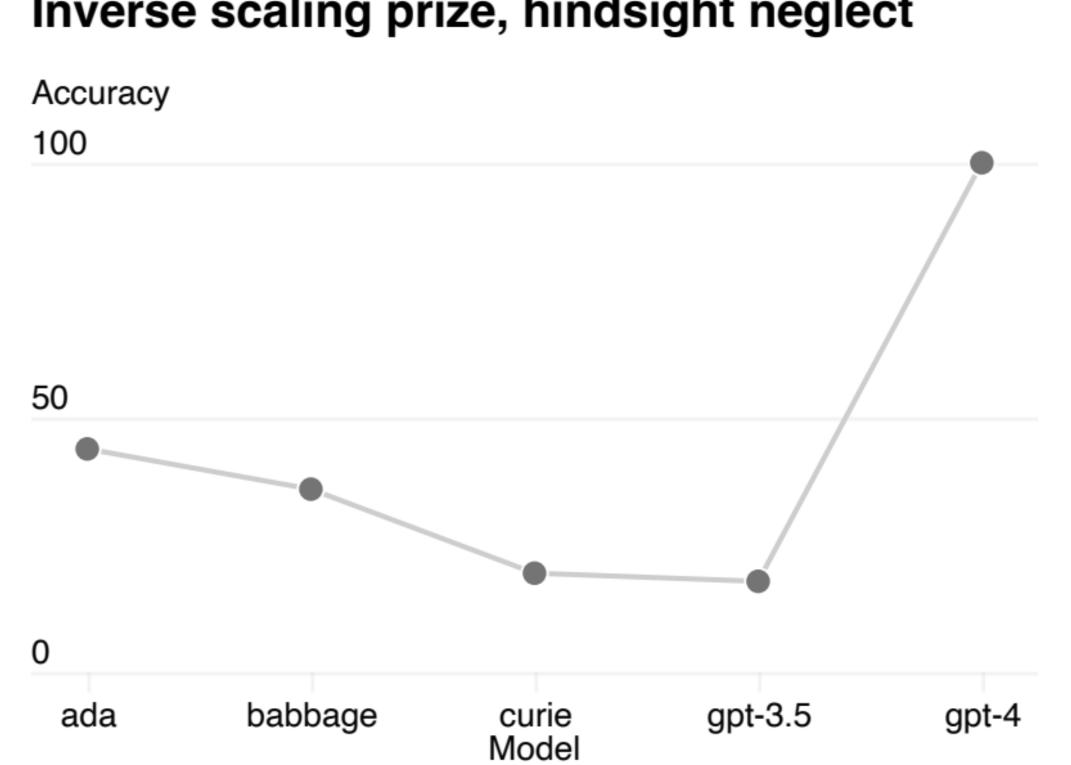


Figure 3. Performance of GPT-4 and smaller models on the Hindsight Neglect task. Accuracy is shown on the y-axis, higher is better. ada, babbage, and curie refer to models available via the OpenAI API [47].

Exam	GPT-4
Uniform Bar Exam (MBE+MEE+MPT)	298 / 400 (~9
LSAT	163 (~88th
SAT Evidence-Based Reading & Writing	710 / 800 (~9
SAT Math	700 / 800 (~8
Graduate Record Examination (GRE) Quantitative	163 / 170 (~8
Graduate Record Examination (GRE) Verbal	169 / 170 (~9
Graduate Record Examination (GRE) Writing	4 / 6 (~54tl
USABO Semifinal Exam 2020	87 / 150 (99th -
USNCO Local Section Exam 2022	36 / 60
Medical Knowledge Self-Assessment Program	75 %
Codeforces Rating	392 (below 5
AP Art History	5 (86th - 100
AP Biology	5 (85th - 100
AP Calculus BC	4 (43rd - 59
AP Chemistry	4 (71st - 88
AP English Language and Composition	2 (14th - 44
AP English Literature and Composition	2 (8th - 22n

GPT-4	GPT-4 (no vision)	GPT-3.5
98 / 400 (~90th)	298 / 400 (~90th)	213 / 400 (~10th)
163 (~88th)	161 (~83rd)	149 (~40th)
l0/800 (~93rd)	710 / 800 (~93rd)	670 / 800 (~87th)
00 / 800 (~89th)	690 / 800 (~89th)	590 / 800 (~70th)
53 / 170 (~80th)	157 / 170 (~62nd)	147 / 170 (~25th)
59 / 170 (~99th)	165 / 170 (~96th)	154 / 170 (~63rd)
4 / 6 (~54th)	4 / 6 (~54th)	4 / 6 (~54th)
150 (99th - 100th)	87 / 150 (99th - 100th)	43 / 150 (31st - 33rd)
36 / 60	38 / 60	24 / 60
75 %	75 %	53 %
92 (below 5th)	392 (below 5th)	260 (below 5th)
5 (86th - 100th)	5 (86th - 100th)	5 (86th - 100th)
5 (85th - 100th)	5 (85th - 100th)	4 (62nd - 85th)
4 (43rd - 59th)	4 (43rd - 59th)	1 (0th - 7th)
4 (71st - 88th)	4 (71st - 88th)	2 (22nd - 46th)
2 (14th - 44th)	2 (14th - 44th)	2 (14th - 44th)
2 (8th - 22nd)	2 (8th - 22nd)	2 (8th - 22nd)

	_
AP Environmental Science	5 (9
AP Macroeconomics	5 (8
AP Microeconomics	5 (8
AP Physics 2	4 (
AP Psychology	5 (8
AP Statistics	5 (8
AP US Government	5 (8
AP US History	5 (8
AP World History	4 (
AMC 10 ³	30 / 1
AMC 12 ³	60 / 15
Introductory Sommelier (theory knowledge)	
Certified Sommelier (theory knowledge)	
Advanced Sommelier (theory knowledge)	
	1

Leetcode (easy) Leetcode (medium)

Leetcode (hard)

91st - 100th)	5 (91st - 100th)	5 (91st - 100th)
84th - 100th)	5 (84th - 100th)	2 (33rd - 48th)
82nd - 100th)	4 (60th - 82nd)	4 (60th - 82nd)
(66th - 84th)	4 (66th - 84th)	3 (30th - 66th)
83rd - 100th)	5 (83rd - 100th)	5 (83rd - 100th)
85th - 100th)	5 (85th - 100th)	3 (40th - 63rd)
88th - 100th)	5 (88th - 100th)	4 (77th - 88th)
89th - 100th)	4 (74th - 89th)	4 (74th - 89th)
(65th - 87th)	4 (65th - 87th)	4 (65th - 87th)
50 (6th - 12th)	36 / 150 (10th - 19th)	36 / 150 (10th - 19th)
50 (45th - 66th)	48 / 150 (19th - 40th)	30 / 150 (4th - 8th)
92 %	92 %	80 %
86 %	86 %	58 %
77 %	77 %	46 %
31/41	31 / 41	12/41
21 / 80	21 / 80	8 / 80
3 / 45	3 / 45	0 / 45

Exam results (ordered by GPT-3.5 performance)

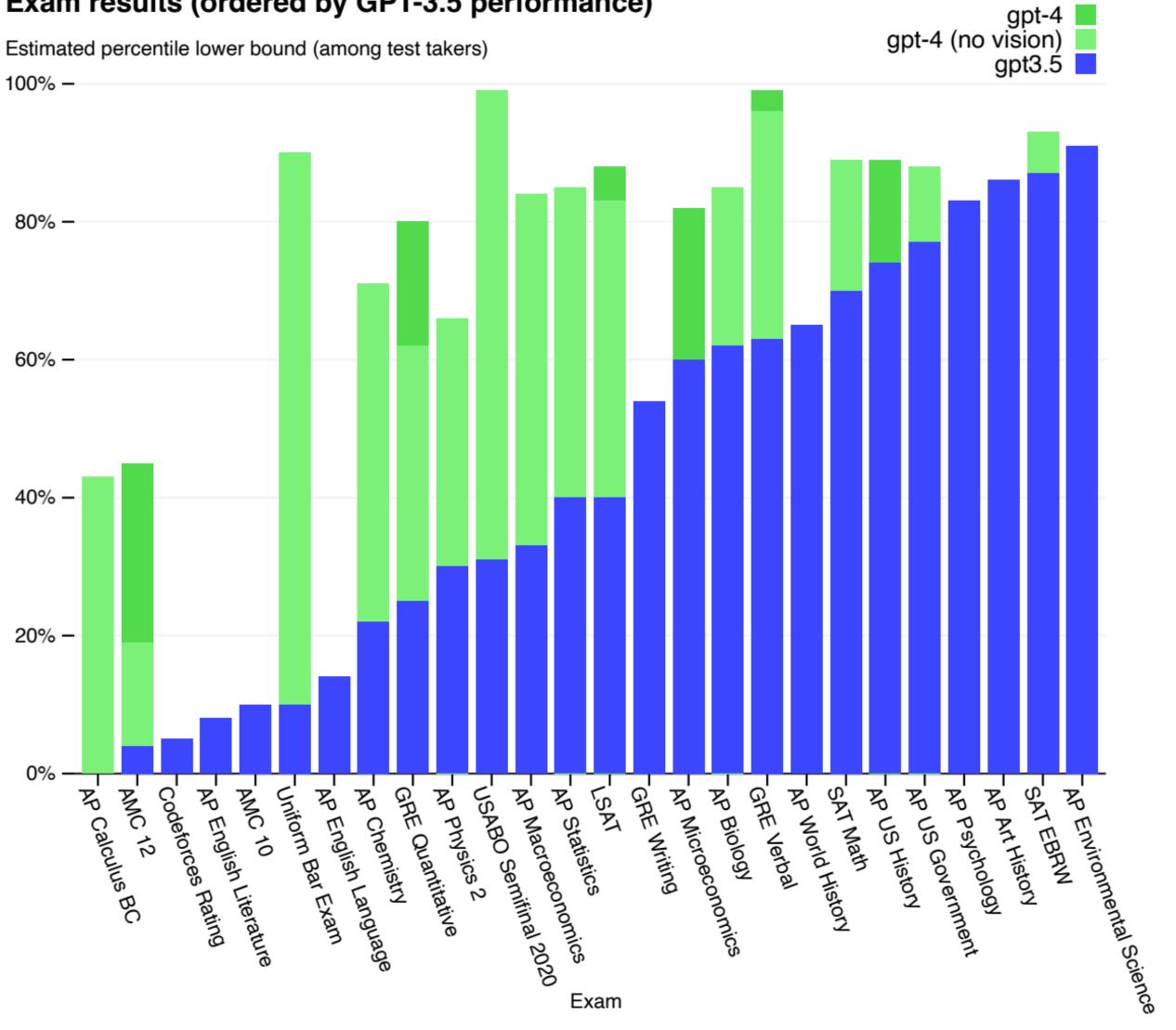


Figure 4. GPT performance on academic and professional exams. In each case, we simulate the conditions and scoring of the real exam. Exams are ordered from low to high based on GPT-3.5 performance. GPT-4 outperforms GPT-3.5 on most exams tested. To be conservative we report the lower end of the range of percentiles, but this creates some artifacts on the AP exams which have very wide scoring bins. For example although GPT-4 attains the highest possible score on AP Biology (5/5), this is only shown in the plot as 85th percentile because 15 percent of test-takers achieve that score.

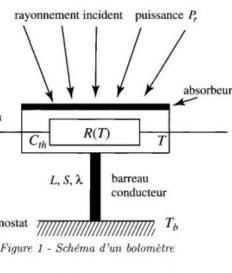
GPT-4 visual input example, École Polytechnique Exam Question:

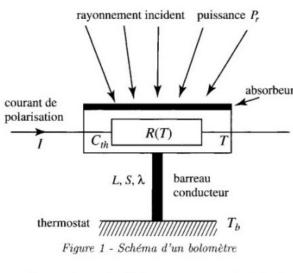
User

I. Principe de la détection de rayonnement avec un bolomètre

la capacité thermique C_{th} .

Un barreau, conducteur thermique, homogène, de longueur L, de section S et de conductivité thermique λ et sans échanges thermiques latéraux, relie le bolomètre à un thermostat de température T_b fixe.





I.1. Dans cette première partie, on étudie le comportement du bolomètre en régime stationnaire, à la température de fonctionnement $T = T_0$.

abscisse x; on prendra $T(0) = T_0$ et $T(L) = T_b$.

GPT-4 T(0) = T0 and T(L) = Tb.

> conduction in the bar is: $d^{2}T/dx^{2} = 0$

Integrating once, we get: $dT/dx = C_1$

Integrating a second time: $T(x) = C_1 x + C_2$

To determine the constants C_1 and C_2 , we use the boundary conditions: T(0) = T0, which gives $C_2 = T0$ T(L) = Tb, which gives $C_1 = (Tb - T0)/L$

Finally, the expression for T(x) is: T(x) = (Tb - T0) * (x/L) + T0This represents a linear temperature profile along the conductive bar, with a slope of (Tb - T0)/L.

it using chain-of-thought prompting.

Answer question I.1.a. Think step-by-step.

Comme illustré sur la figure 1 un bolomètre est constitué d'un absorbeur qui reçoit le rayonnement que l'on désire détecter. Sa température T, supposée uniforme, est mesurée à l'aide d'un thermomètre incorporé, constitué d'un matériau conducteur dont la résistance R(T) varie avec la température T ; cette variation est caractérisée par le coefficient $\alpha = \frac{1}{R} \frac{dR}{dT}$. L'ensemble possède

I.1.a) Exprimer la température T(x) en tout point du barreau conducteur repéré par son

To answer question I.1.a, we need to express the temperature T(x) in every point of the conductive bar, which is characterized by the abscissa x. We are given that

For a stationary regime, the heat equation for the one-dimensional heat

Table 15. Example prompt demonstrating GPT-4's visual input capability. The prompt consists of a question which requires understanding a physics problem with a diagram written in French and solving

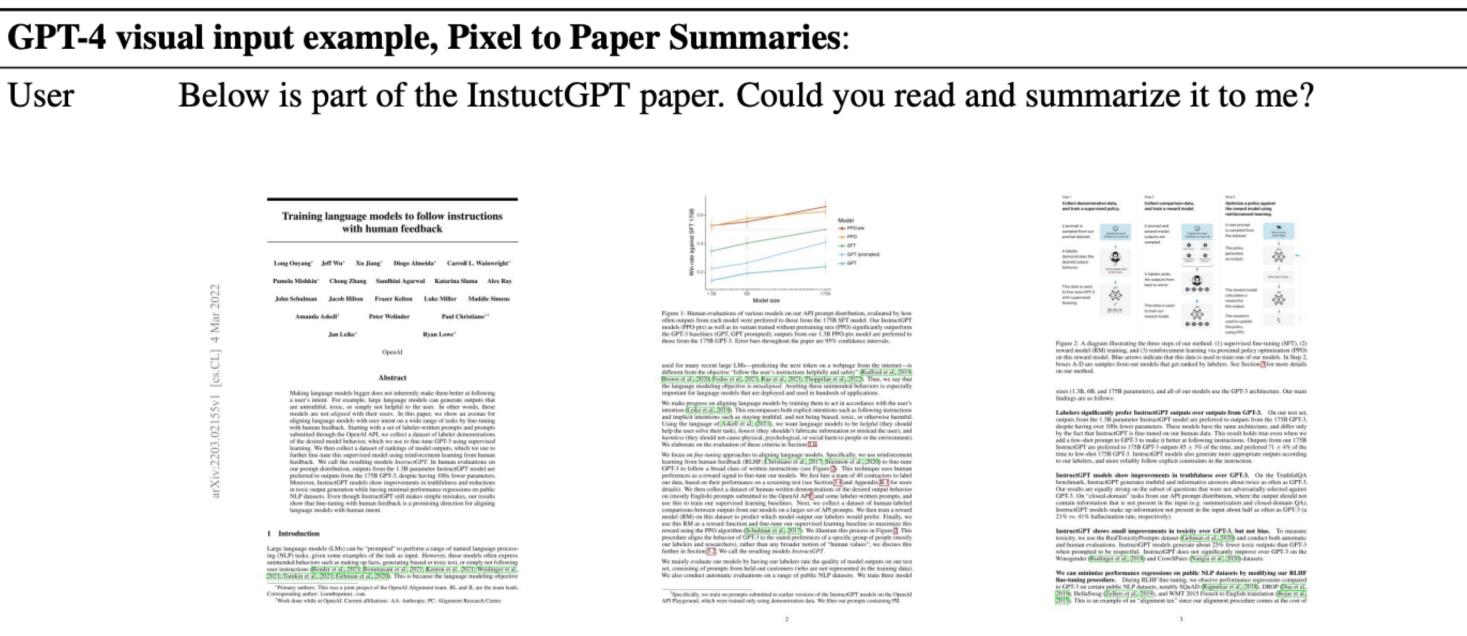
GPT-4 visual input example, Extreme Ironing:

User What is unusual about this image?

The unusual thing about this image is that a man is ironing clothes on an ironing GPT-4 board attached to the roof of a moving taxi.

Table 16. Example prompt demonstrating GPT-4's visual input capability. The prompt requires image understanding.

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg



GPT-4

The InstructGPT paper focuses on training large language models to follow instructions with human feedback. The authors note that making language models larger doesn't inherently make them better at following a user's intent. Large models can generate outputs that are untruthful, toxic, or simply unhelpful.

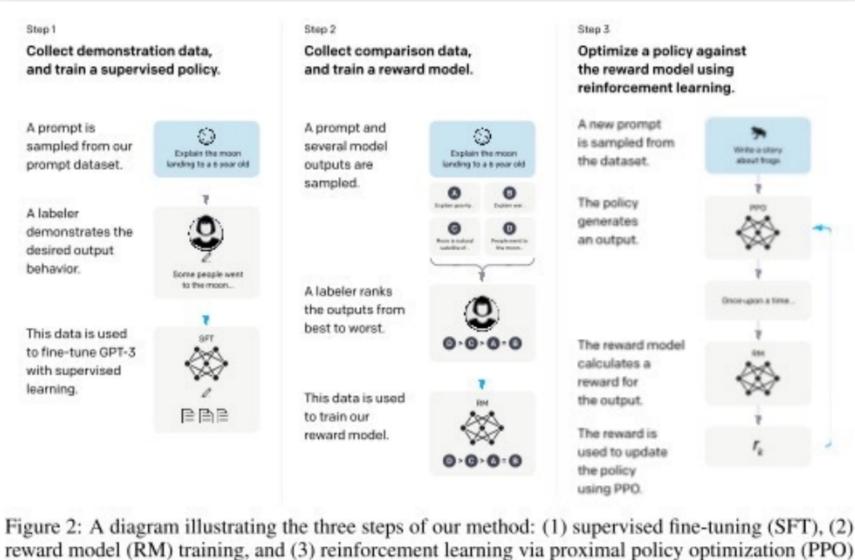
To address this issue, the authors fine-tune language models on a wide range of tasks using human feedback. They start with a set of labeler-written prompts and responses, then collect a dataset of labeler demonstrations of the desired model behavior. They fine-tune GPT-3 using supervised learning and then use reinforcement learning from human feedback to further fine-tune the model. The resulting model, called InstructGPT, shows improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets.

The authors conclude that fine-tuning with human feedback is a promising direction for aligning language models with human intent.

Step 2 Step 1 Collect comparison data, Collect demonstration data, and train a supervised policy. and train a reward model. A prompt is A prompt and 0 sampled from our several model Explain the moon prompt dataset. landing to a 6 year old outputs are sampled. A labeler Ş demonstrates the desired output behavior. Some people week to the moon. A labeler ranks the outputs from best to worst. This data is used SFT to fine-tune GPT-3 \otimes with supervised learning. 0 This data is used to train our reward model.

on our method.

User	Could you explain the process de
GPT-4	Figure 2 in the InstructGPT pape
	1. Supervised fine-tuning (SI of labeler-written prompts and de with supervised learning.
	2. Reward model (RM) train ranks the outputs from several mother the reward model.
	3. Reinforcement learning us mize a policy against the reward sampled from the dataset, the porteward for the output, and the rev
	These three steps are iterative aims to generate outputs that alignmore effectively.
-	



reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO) on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2, boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details

described in Figure 2?

er illustrates the three steps of their method:

SFT): They collect demonstration data, which consists esired output behavior. This data is used to fine-tune GPT-3

ining: They collect comparison data, where a labeler nodel samples (from best to worst). This data is used to train

using Proximal Policy Optimization (PPO): They optimodel using reinforcement learning. For each new prompt olicy generates an output. The reward model calculates a eward is used to update the policy using the PPO algorithm.

ely performed to train the InstructGPT model, which ign better with human preferences and follow instructions

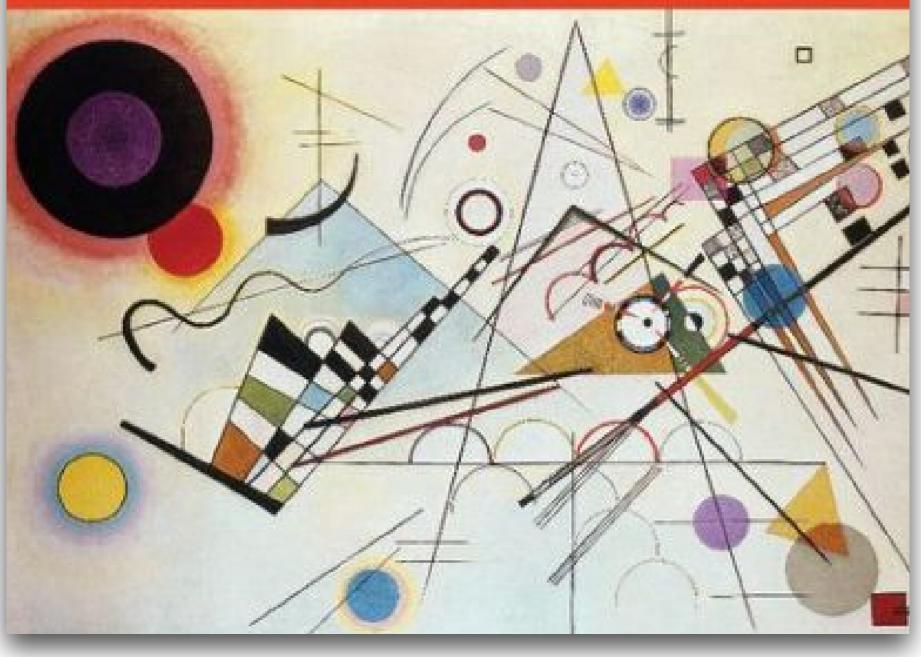
Key trend from GPT-1 to GPT-4: Scaling

= Larger models, trained on more data, with more compute

Shai Shalev-Shwartz and Shai Ben-David

UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS



COROLLARY 2.3 Let \mathcal{H} be a finite and let m be an integer that satisfies $m > \frac{1}{2}$

Then, for any labeling function, f, and for any distribution, \mathcal{D} , for which the realizability assumption holds (that is, for some $h \in \mathcal{H}$, $L_{(\mathcal{D},f)}(h) = 0$), with probability of at least $1 - \delta$ over the choice of an i.i.d. sample S of size m, we have that for every ERM hypothesis, h_S , it holds that

 $L_{(\mathcal{D},f)}(h_S) \leq \epsilon.$

COROLLARY 2.3 Let \mathcal{H} be a finite hypothesis class. Let $\delta \in (0,1)$ and $\epsilon > 0$

 $m \ge \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}.$

THEOREM 6.8 (The Fundamental Theorem of Statistical Learning – Quantitative Version) Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0, 1\}$ and let the loss function be the 0 - 1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1, C_2 such that:

1. H has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity $C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le r$

3. \mathcal{H} is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

$$m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

Then,

$$L_{\mathcal{D}}(h) - L_S(h) \leq 2_{S'}$$

1. With probability of at least $1 - \delta$, for all $h \in \mathcal{H}$, $\sum_{n \in D^m} R(\ell \circ \mathcal{H} \circ S') + c \sqrt{\frac{2 \ln(2/\delta)}{m}}.$ In particular, this holds for $h = \text{ERM}_{\mathcal{H}}(S)$. 2. With probability of at least $1 - \delta$, for all $h \in \mathcal{H}$, $2R(\ell \circ \mathcal{H} \circ S) + 4c\sqrt{\frac{2\ln(4/\delta)}{m}}.$ In particular, this holds for $h = \text{ERM}_{\mathcal{H}}(S)$. 3. For any h^* , with probability of at least $1 - \delta$,

$$L_{\mathcal{D}}(h) - L_S(h) \leq 2$$

THEOREM 26.5 Assume that for all z and $h \in \mathcal{H}$ we have that $|\ell(h, z)| \leq c$.

 $L_{\mathcal{D}}(\mathrm{ERM}_{\mathcal{H}}(S)) - L_{\mathcal{D}}(h^{\star}) \leq 2R(\ell \circ \mathcal{H} \circ S) + 5c\sqrt{\frac{2\ln(8/\delta)}{m}}.$

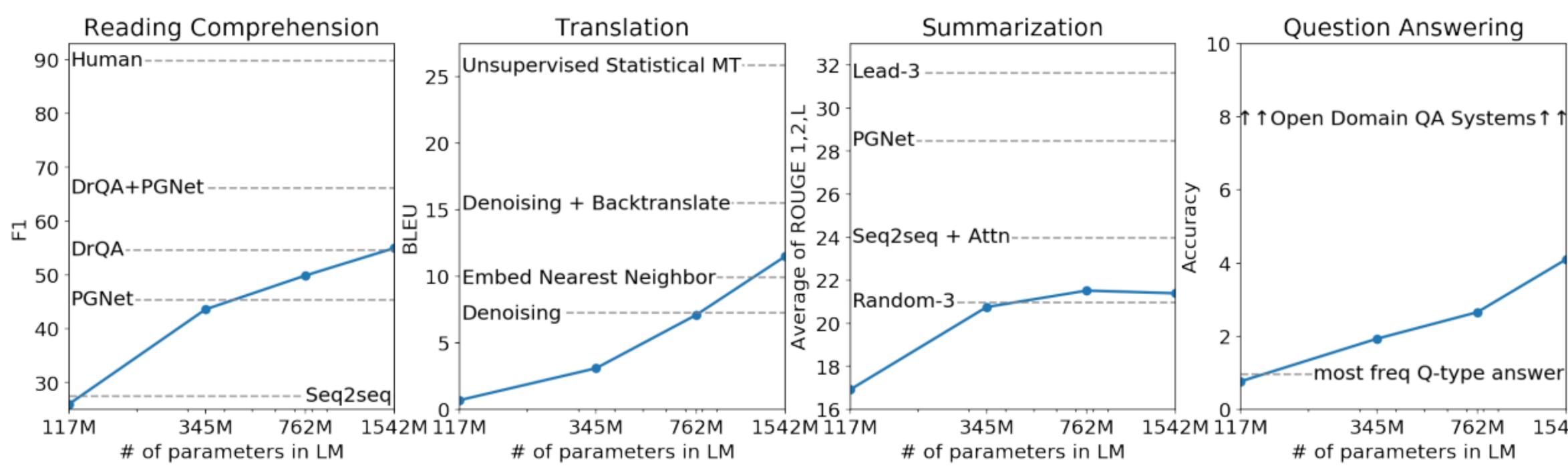
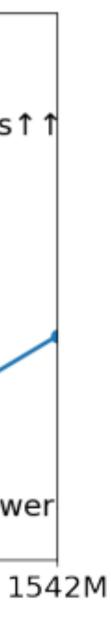
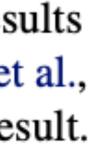
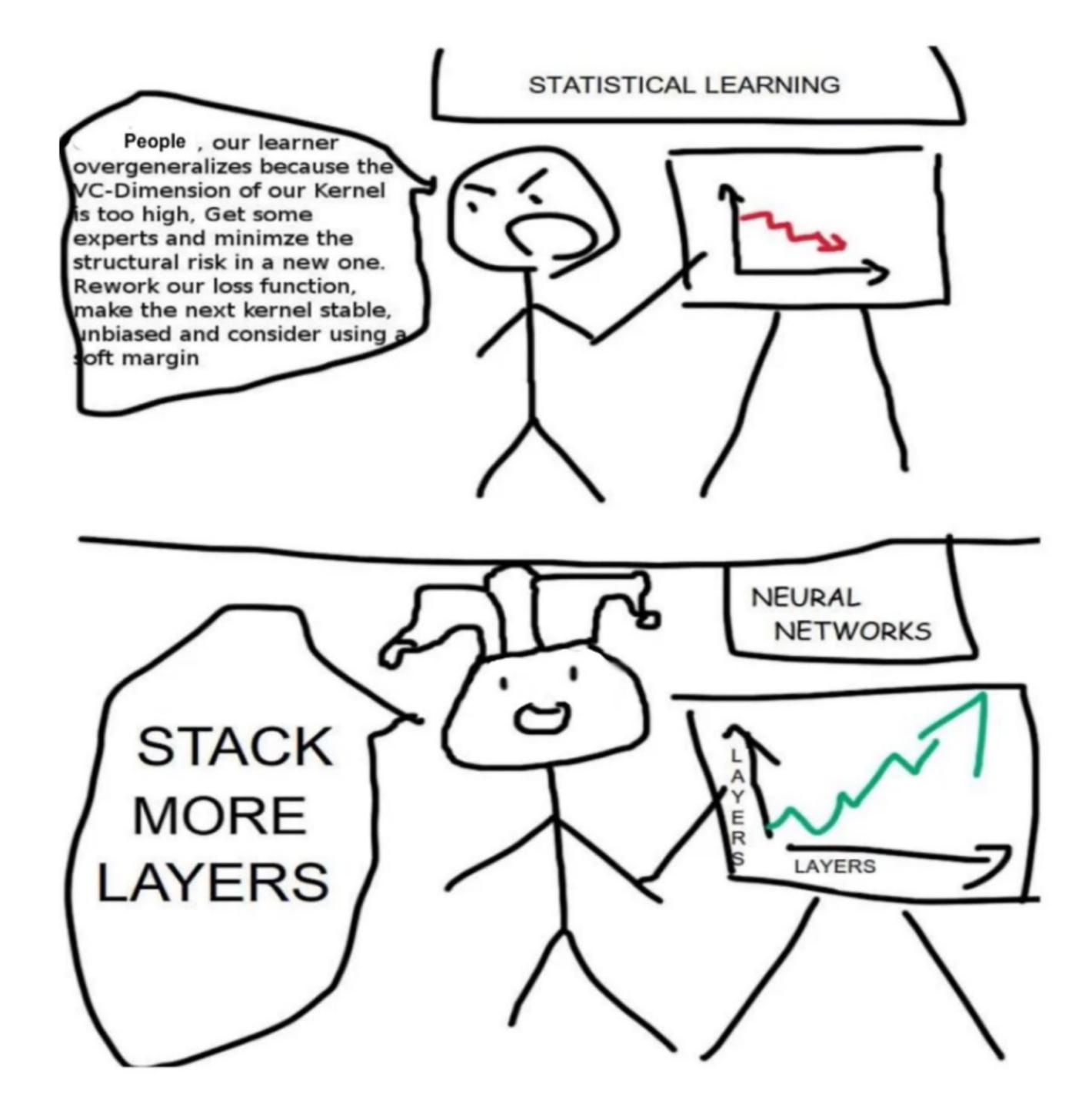


Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al., 2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.







User

GPT-4 The comic is satirizing the difference in approaches to improving model performance between statistical learning and neural networks.

> In statistical learning, the character is shown to be concerned with overfitting and suggests a series of complex and technical solutions, such as minimizing structural risk, reworking the loss function, and using a soft margin.

> In contrast, the neural networks character simply suggests adding more layers to the model. This is often seen as a common solution to improving performance in neural networks, but it's also considered a simplistic and brute-force approach.

> The humor comes from the contrast between the complexity and specificity of the statistical learning approach and the simplicity and generality of the neural network approach. The "But unironically" comment adds to the humor by implying that, despite being simplistic, the "stack more layers" approach is often effective in practice.

Can you explain why this is funny. Think about it step-by-step.

But unironically