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Improving Language Understanding
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Abstract

Natural language understanding comprises a wide range of diverse tasks such
as textual entailment, question answering, semantic similarity assessment, and
document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for
discriminatively trained models to perform adequately. We demonstrate that large
gains on these tasks can be realized by generative pre-training of a language model
on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each
specific task. In contrast to previous approaches, we make use of task-aware input
transformations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture. We demonstrate the effectiveness of
our approach on a wide range of benchmarks for natural language understanding.
Our general task-agnostic model outperforms discriminatively trained models that
use architectures specifically crafted for each task, significantly improving upon the
state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute
improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on
question answering (RACE), and 1.5% on textual entailment (MultiNLI).
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State-of-the-art ML models often come from a two-step process.




Text Task e L. .
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Figure 1: (left) Transformer architecture and training objectives used 1n this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.



Training dataset

BooksCorpus dataset
7,000 unpublished books from a variety of genres (adventure, fantasy, etc.)

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading

Books

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler

Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how
these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far
beyond the captions available in current datasets. To align movies and books we exploit a neural sentence embedding that is trained in an unsupervised way from a large corpus of
books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. We propose a context-aware CNN to combine information
from multiple sources. We demonstrate good quantitative performance for movie/book alignment and show several qualitative examples that showcase the diversity of tasks our model

can be used for.

In order to train our sentence similarity model we collected a corpus of 11,038 books from

the web. These are free books written by yet unpublished authors. We only included books
that had mnra than 20K wwnrie in nriar tn filtar Nni it narhanc Nnniciar chnrtar ctnrine Tho

dataset hes
Science fii

# of books

# of sentences

# of words

# of unique words

mean # of words per sentence

median # of words per sentence

11,038

74,004,228

984,846,357

1,316,420

13

11

Table 2: Summary statistics of our BookCorpus dataset. We use this corpus to train the sentence embedding model.




Table 2: Experimental results on natural language inference tasks, comparing our model with current
state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the

evaluation metric.

Method MNLI-m MNLI-mm SNLI SciTall QNLI RTE
ESIM + ELMo [44] (5x) - : 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - . .
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 82.3 59.2
Multi-task BILSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 31.4 89.9 38.3 88.1 56.0



Table 3: Results on question answering and commonsense reasoning, comparing our model with
current state-of-the-art methods.. 9x means an ensemble of 9 models.

Method Story Cloze @ RACE-m RACE-h RACE
val-LS-skip [53] 76.5 - - -
Hidden Coherence Model [7] 77.6 - - -
Dynamic Fusion Net [67] (9x) : 55.6 49.4 51.2
BiAttention MRU [59] (9x) - 60.2 50.3 53.3

Finetuned Transformer LM (ours) 86.5 62.9 57.4 59.0



Table 4: Semantic similarity and classification results, comparing our model with current state-of-the-
art methods. All task evaluations 1n this table were done using the GLUE benchmark. (mc= Mathews

correlation, acc=Accuracy, pc=Pearson correlation)

Method Classification Semantic Similarity GLUE

CoLA SST2 MRPC STSB QQP

(mc)  (acc)  (Fl) (pc)  (FI)

Sparse byte mLSTM [16] - 93.2 - - - -
TF-KLD [23] - - 86.0 - - -
ECNU (mixed ensemble) [60] - : : 81.0 - -
Single-task BILSTM + ELMo + Attn [64] 35.0 90.2 80.2 55.5 66.1 64.8
Multi-task BiLSTM + ELMo + Attn [64] 18.9 91.6 83.5 72.8 633 68.9
Finetuned Transformer LM (ours) 45.4 91.3 82.3 32.0 70.3 72.8
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Figure 2: (left) Effect of transferring increasing number of layers from the pre-trained language
model on RACE and MultiNLI. (right) Plot showing the evolution of zero-shot performance on
different tasks as a function of LM pre-training updates. Performance per task 1s normalized between
a random guess baseline and the current state-of-the-art with a single model.



Future

e Scaling the approach: We’ve observed that improvements in the performance of
the language model are well correlated with improvements on downstream tasks.
We're currently using commodity hardware (a single 8 GPU machine) and a
training dataset of only a few thousand books (-5GB of text). This suggests there
is significant room for improvement using the well-validated approach of more
compute and data.

e Improved fine-tuning: Our approach is currently very simple. It is likely that
substantial improvements can be made using more intricate adaptation and
transfer techniques such as those explored in ULMFiT.

e Better understanding of why generative pre-training helps: Although we’ve
discussed some ideas we are partial to here, more targeted experiments and
research will help distinguish between competing explanations. For instance, how
much of the benefits we observe are due to improved ability to process broader
context versus improved world knowledge?



GPT-

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu ! Rewon Child! David Luan! Dario Amodei ™! Ilya Sutskever ™!

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-
prehension, and summarization, are typically
approached with supervised learning on task-
specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When
conditioned on a document plus questions, the an-
swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127,000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state of the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting
but still underfits WebText. Samples from the
model reflect these improvements and contain co-
herent paragraphs of text. These findings suggest
a promising path towards building language pro-
cessing systems which learn to perform tasks from
their naturally occurring demonstrations.

competent generalists. We would like to move towards more
general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

The dominant approach to creating ML systems is to col-
lect a dataset of training examples demonstrating correct
behavior for a desired task, train a system to imitate these
behaviors, and then test its performance on independent
and identically distributed (IID) held-out examples. This
has served well to make progress on narrow experts. But
the often erratic behavior of captioning models (Lake et al.,
2017), reading comprehension systems (Jia & Liang, 2017),
and image classifiers (Alcorn et al., 2018) on the diversity
and variety of possible inputs highlights some of the short-
comings of this approach.

Our suspicion is that the prevalence of single task training
on single domain datasets is a major contributor to the lack
of generalization observed in current systems. Progress
towards robust systems with current architectures is likely
to require training and measuring performance on a wide
range of domains and tasks. Recently, several benchmarks
have been proposed such as GLUE (Wang et al., 2018) and
decaNLP (McCann et al., 2018) to begin studying this.

Multitask learning (Caruana, 1997) is a promising frame-
work for improving general performance. However, mul-
titask training in NLP is still nascent. Recent work re-
ports modest performance improvements (Yogatama et al.,
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Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results

are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.



CoQA: A Conversational Question Answering Challenge
Siva Reddy, Dangi Chen, Christopher D. Manning

Humans gather information by engaging in conversations involving a series of interconnected questions and
answers. For machines to assist in information gathering, it is therefore essential to enable them to answer
conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering
systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages
from seven diverse domains. The questions are conversational, and the answers are free-form text with their
corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational
guestions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference
and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The
best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating
there is ample room for improvement. We launch CoQA as a challenge to the community at this http URL

Comments: TACL (presented at NAACL 2019)




Jessica went to sit in her rocking chair. Today was her birthday
and she was turning 80. Her granddaughter Annie was coming
over 1n the afternoon and Jessica was very excited to see
her. Her daughter Melanie and Melanie’s husband Josh were

coming as well. Jessica had ...
Q3: Did she plan to have any visitors?

Q1: Who had a birthday? Ag: Yes | |
A;: Jessica R3: Her granddaughter Annie was coming over
R;: Jessica went to sit 1n her rocking chair. Today was her Q4: How many?
birthday and she was turning 80. Aq4: Three

R4: Her granddaughter Annie was coming over in the after-
Q2: How old would she be? noon and Jessica was very excited to see her. Her daughter
As: 80 Melanie and Melanie’s husband Josh were coming as well.
R2: she was turning 80 Qs: Who?

As: Annie, Melanie and Josh

R5: Her granddaughter Annie was coming over in the after-
noon and Jessica was very excited to see her. Her daughter
Melanie and Melanie’s husband Josh were coming as well.

Figure 1: A conversation from the CoQA dataset.
Each turn contains a question (Q;), an answer (A;)
and a rationale (R;) that supports the answer.



Dataset Conversational  Answer Type Domain

MCTest (Richardson et al., 2013) X Multiple choice Children’s stories
CNN/Daily Mail (Hermann et al., 2015) X Spans News

Children’s book test (Hill et al., 2016) X Multiple choice Children’s stories
SQuAD (Rajpurkar et al., 2016) X Spans Wikipedia

MS MARCO (Nguyen et al., 2016) X Free-form text, Unanswerable = Web Search

NewsQA (Trischler et al., 2017) X Spans News

SearchQA (Dunn et al., 2017) X Spans Jeopardy

TriviaQA (Joshi et al., 2017) X Spans Trivia

RACE (Lai et al., 2017) X Multiple choice Mid/High School Exams
Narrative QA (Kocisky et al., 2018) X Free-form text Movie Scripts, Literature
SQuAD 2.0 (Rajpurkar et al., 2018) X Spans, Unanswerable Wikipedia

CoQA (this work) v Free-form text, Unanswerable; Children’s Stories, Literature,

Each answer comes with a Mid/High School Exams, News,
text span rationale Wikipedia, Reddit, Science
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Computed on bag of word representation of
prediction and ground truth.
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Training dataset

Web scrape with focus on document quality.
Goal: high quality via human curation
But: explicit human annotation too expensive

» All outbound links from Reddit with at least 3 karma.
(45M links)

Resulting dataset: WebText
8M documents / 40 GB of text after more heuristic filtering and de-duplication
Only text (HTML etc removed)



Model

Transformer (next time!)

Four model sizes: Parameters Layers d,.odel
117M 12 768
345M 24 1024
762M 36 1280
1542M 48 1600

Vocabulary size: 50,257

Context size: 1024 tokens

Training batch size: 512



LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl03  1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54  0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76  0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).
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Figure 2. Performance on the Children’s Book Test as a function of

model capacity. Human performance are from Bajgar et al. (2016),
instead of the much lower estimates from the original paper.
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The city councilmen refused the demonstrators a permit because they [feared/
advocated] violence. Who [feared/advocated] violence?

Answers: The city councilmen/the demonstrators.

The trophy doesn't fit into the brown suitcase because it's too [small/
large]. What is too [small/large]?

Answers: The suitcase/the trophy.

Joan made sure to thank Susan for all the help she had [given/received]. Who
had [given/received] help?

Answers: Susan/Joan.



R-1 R-2 R-L R-AVG
Bottom-Up Sum | 41.22 18.68 38.34 32.75
Lede-3 40.38 17.66 36.62 31.55
Seq2Seq + Attn | 31.33  11.81 28.83 | 23.99
GPT-2 TL; DR: 29.34 827  26.58 21.40
Random-3 28.78 8.63 25.52 20.98
GPT-2 no hint 21.58  4.03 19.47 15.03

Table 4. Summarization performance as measured by ROUGE Fl1
metrics on the CNN and Daily Mail dataset. Bottom-Up Sum 1s
the SOTA model from (Gehrmann et al., 2018)



Natural questions dataset

GPT-2: 4.1% correct (smallest model: 1.0%, Alec: 17 out of 100)

Question Generated Answer Correct  Probability
Who wrote the book the origin of species? Charles Darwin v 83.4%
Who is the founder of the ubuntu project? Mark Shuttleworth v 82.0%
Who is the quarterback for the green bay packers? Aaron Rodgers v 81.1%
Panda is a national animal of which country? China v 76.8%
Who came up with the theory of relativity? Albert Einstein v 76.4%
When was the first star wars film released? 1977 v 71.4%
What 1s the most common blood type in sweden? A X 70.6%
Who is regarded as the founder of psychoanalysis? Sigmund Freud v 69.3%
Who took the first steps on the moon in 1969? Neil Armstrong v 66.8%
Who is the largest supermarket chain in the uk? Tesco v 65.3%
What 1s the meaning of shalom in english? peace v 64.0%
Who was the author of the art of war? Sun Tzu v 59.6%
Largest state in the us by land mass? California X 59.2%
Green algae 1s an example of which type of reproduction? parthenogenesis X 56.5%
Vikram samvat calender 1s official in which country? India v 55.6%
Who 1s mostly responsible for writing the declaration of independence? Thomas Jefferson v 53.3%
What us state forms the western boundary of montana? Montana X 52.3%
Who plays ser davos in game of thrones? Peter Dinklage X 52.1%
Who appoints the chair of the federal reserve system? Janet Yellen X 51.5%
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Language Models are Few-Shot Learners
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Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets ot thousands or tens ot
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 1s applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also 1dentity some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological 1ssues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.



Fine-tuning vs. zero / few-shot inference
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“In-context |

The three settings we explore for in-context learning

earning”

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example

cheese => prompt

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a

large corpus of example tasks.

1 sea otter => loutre de mer «—— example #1

gradient update

éI(_

1 peppermint => menthe poivrée «——— example #2

gradient update

eI6

N\ 4

1 plush giraffe => girafe peluche < example #N

gradient update

1 cheese => <« prompt



Zero-shot One-shot Few-shot
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.



100 Aggregate Performance Across Benchmarks
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Figure 1.3: Aggregate performance for all 42 accuracy-denominated benchmarks While zero-shot performance
improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are
more proficient at in-context learning. See Figure 3.8 for a more detailed analysis on SuperGLUE, a standard NLP
benchmark suite.



Models

Model Name NMparams Mlayers @model Theads @head DBatch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 10~4
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 10~4
GPT-3 6.7B 6.7B 32 4096 32 128 oM 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 oM 1.0 x 10~4
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
1s almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.



Training set

Quantity Weight 1n Epochs elapsed when

Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books?2 535 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a

result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

Filtering:
o (Classifier trained on WebText2 vs Common Craw|
 Deduplication
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Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH"20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.



LAMBADA LAMBADA StoryCloze HellaSwag

Setting (acc) (ppl) (acc) (acc)
SOTA 68.04 8.63° 91.8°¢ 85.6¢
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 36.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. “[Tur20] 2[RWC*19] ¢[LDL19]
dILCH120]
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Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.
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Figure 3.5: Zero-, one-, and few-shot performance on the adversarial Winogrande dataset as model capacity scales.
Scaling is relatively smooth with the gains to few-shot learning increasing with model size, and few-shot GPT-3 175B
1s competitive with a fine-tuned ROBERTA -large.
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Figure 3.7: GPT-3 results on CoQA reading comprehension task. GPT-3 175B achieves 85 F1 in the few-shot setting,
only a few points behind measured human performance and state-of-the-art fine-tuned models. Zero-shot and one-shot
performance 1s a few points behind, with the gains to few-shot being largest for bigger models.
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Figure 3.10: Results on all 10 arithmetic tasks in the few-shot settings for models of different sizes. There is a
significant jump from the second largest model (GPT-3 13B) to the largest model (GPT-3 175), with the latter being
able to reliably accurate 2 digit arithmetic, usually accurate 3 digit arithmetic, and correct answers a significant fraction
of the time on 4-5 digit arithmetic, 2 digit multiplication, and compound operations. Results for one-shot and zero-shot
are shown 1n the appendix.



Human ability to detect model generated news articles
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Figure 3.13: People’s ability to identify whether news articles are model-generated (measured by the ratio of correct
assignments to non-neutral assignments) decreases as model size increases. Accuracy on the outputs on the deliberately-
bad control model (an unconditioned GPT-3 Small model with higher output randomness) is indicated with the dashed
line at the top, and the random chance (50%) is indicated with the dashed line at the bottom. Line of best fit is a power
law with 95% confidence intervals.
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Scaling Language Models: Methods, Analysis
& Insights from Training Gopher
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Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
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Language modelling provides a step towards intelligent communication systems by harnessing large
repositories of written human knowledge to better predict and understand the world. In this paper, we
present an analysis of Transformer-based language model performance across a wide range of model
scales — from models with tens of millions of parameters up to a 280 billion parameter model called
Gopher. These models are evaluated on 152 diverse tasks, achieving state-of-the-art performance across
the majority. Gains from scale are largest in areas such as reading comprehension, fact-checking, and
the identification of toxic language, but logical and mathematical reasoning see less benefit. We provide
a holistic analysis of the training dataset and model’s behaviour, covering the intersection of model
scale with bias and toxicity. Finally we discuss the application of language models to Al safety and the
mitigation of downstream harms.




Training Compute-Optimal Large Language Models
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We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly

facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.
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Abstract

Large language models have been shown to achieve remarkable performance across a variety of natural
language tasks using few-shot learning, which drastically reduces the number of task-specific training
examples needed to adapt the model to a particular application. To further our understanding of the
impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer
language model, which we call Pathways Language Model (PaLM).

We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient
training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-
the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a
number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-
of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the
recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous
improvements from model scale, meaning that performance steeply increased as we scaled to our largest
model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we
demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias
and toxicity, and study the extent of training data memorization with respect to model scale. Finally,
we discuss the ethical considerations related to large language models and discuss potential mitigation
strategies.
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Abstract progress on improving known challenges in areas
such as robustness, bias, and toxicity.

In this technical report, we present Open Pre-
trained Transformers (OPT), a suite of decoder-

Large language models, which are often
trained for hundreds of thousands of compute
days, have shown remarkable capabilities for

zero- and few-shot learning. Given their com- only pre-trained transformers ranging from 125M
putational cost, these models are difficult to to 175B parameters, which we aim to fully and
replicate without significant capital. For the responsibly share with interested researchers. We
few that are available through APIs, no ac- train the OPT models to roughly match the per-
cess 1s granted to the full model weights, mak- formance and sizes of the GPT-3 class of models,

ing them difficult to study. We present Open
Pre-trained Transformers (OPT), a suite of
decoder-only pre-trained transformers ranging
from 125M to 175B parameters, which we aim

while also applying the latest best practices in data
collection and efficient training. Our aim in de-
veloping this suite of OPT models is to enable re-

to fully and responsibly share with interested producible and responsible research at scale, and
researchers. We show that OPT-175B is com- to bring more voices to the table in studying the
parable to GPT-3,! while requiring only 1/7th impact of these LLMs. Definitions of risk, harm,
the carbon footprint to develop. We are also bias, and toxicity, etc., should be articulated by the

releasing our logbook detailing the infrastruc-
ture challenges we faced, along with code for
experimenting with all of the released models.

collective research community as a whole, which 1s
only possible when models are available for study.
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BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

BigScience Workshop: Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana llic, Daniel Hesslow, Roman Castagne, Alexandra
Sasha Luccioni, Francois Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka
Ammanamanchi, Thomas Wang, Benoit Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, |z Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo
Laurencon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit
Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van
Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo Gonzalez Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De
Toni, Gérard Dupont, German Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, lan Yu, ldris Abdulmumin, Isaac
Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jorg Frohberg, Joseph Tobing,
Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic
Tanguy, Manan Dey, Manuel Romero Mufioz, Maraim Masoud, Maria Grandury, Mario Sasko, Max Huang, Maximin Coavoux, Mayank
Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulagilla Khamis,
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Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While
these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As
a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks
to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset
comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a
wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using
LLMs, we publicly release our models and code under the Responsible Al License.
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Abstract

We introduce LLaMA, a collection of founda-
tion language models ranging from 7B to 65B
parameters. We train our models on trillions
of tokens, and show that it 1s possible to train
state-of-the-art models using publicly avail-
able datasets exclusively, without resorting
to proprietary and inaccessible datasets. In
particular, LLaMA-13B outperforms GPT-3
(175B) on most benchmarks, and LLaMA-
65B 1s competitive with the best models,
Chinchilla-70B and PalLM-540B. We release
all our models to the research community’.
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performance, a smaller one trained longer will
ultimately be cheaper at inference. For instance,
although Hoffmann et al. (2022) recommends
training a 10B model on 200B tokens, we find
that the performance of a 7B model continues to
improve even after 1T tokens.

The focus of this work 1s to train a series of
language models that achieve the best possible per-
formance at various inference budgets, by training
on more tokens than what 1s typically used. The
resulting models, called LLaMA, ranges from 7B
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