Adam - what can go wrong and
how to fix It

Mitchell

Based on part of an upcoming research project with Tim Dettmers, Luke
Zettlemoyer, Ari Morcos, Ali Farhadi, Ludwig Schmidt
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What can go wrong with Adam?
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The second moment estimator becomes out-of-date, leading to updates which are too large.



Let’s track how good of an estimator we have for the squared gradient... the following aggregate quantity should be approx 1

Can we search for a causal relationship between an RMS spike and a loss spike?



RMS spikes in the patch embedding layer come _before_ loss spikes
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This Is Just one example... let’'s come up with heuristic for
documenting loss/rms spikes and use this for analysis
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Chance of a loss spike randomly following an RMS spike is 1.0%
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For later layers, RMS spikes are postdictive not predictive of loss
spikes
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e Has this ever been encountered before?

e Yes, Shazeer and Stern found an out of date second moment estimator when
developing AdaFactor and running experiments without warm-up

 They propose a fix called “update clipping”
 Does anyone use “update clipping”?

 No, because people do not get good performance with AdaFactor, but this is
for other reasons (most likely the factored moments)

e So... let’s try AdamW + update clipping and refer to the result as StableAdamW



Slow down learning (reduce learning rate) if second moment estimator out of date

Algorithm 2 StableAdamW ({at}fzo,ﬁl,ﬁg, e)

Vo, Ug — 0
fort=1to 1T do
gt = V f(0;)

// apply correction term to debias moving avg.
n 1_pgt—1
b1 = p1- 1?}3{
n 1_pgt—1
B2 = P2 - 1_525
update moving averages
// upc g g

v = 51% 1+ (1 - 51)915

= Bous_1 + (1 — 52)%
/ / for implementation convenience, the steps
// below occur independently for each tensor
RMS; = /E [g? /u]
// update parameters
Nt = o /max (1, RMS;)
Oy = 0:1 — ap N0y 1 + ﬁtvt/ (\@ -+ E)
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Zero-shot ImageNet accuracy
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Other tips & tricks for optimization

 Use around 5000 iterations of linear warm-up for the learning rate

o After that, use cosine-decay



In things still go wrong...

Empirical Learning Rate

* Inspect your data

1.2e-4
_ 1.0e-4 \
 Use a smaller learning rate
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Figure 1: Empirical LR schedule. We found that low-
ering learning rate was helpful for avoiding instabili-
ties.



What we didn’t cover and may be important

e Scaling learning rate and initialization based on width!

Model Name Nparams MNlayers @model Mheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 M 2.0 x 10~4
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 104
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 104
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

* There are other fixes for this, including scaling LR by RMS(weights) (see
PalLM paper), or “principled” approaches such as mu-transfer
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Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively ©
so for neural networks (NNs) with billions of parameters. We show that, in the =45
recently discovered Maximal Update Parametrization (©P), many optimal HPs L
remain stable even as model size changes. This leads to a new HP tuning paradigm N I e ST L
we call uTransfer: parametrize the target model in uP, tune the HP indirectly on a i ,
smaller model, and zero-shot transfer them to the full-sized model, i.e., without 35 —— 8192 optimum shifts optimum stable =
directly tuning the latter at all. We verify pTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperl;orm pu%lished num%eprs of BEI%T—large (350M parameters), Iv)vith a total —-20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
tuning cost equivalent to pretraining BERT-large once; 2) by transferring from log,LearningRate log,LearningRate

40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github. com/microsoft/mup and installable via pip
install mup.



