Adam - what can go wrong and
how to fix It

Mitchell

Based on part of an upcoming research project with Tim Dettmers, Luke
Zettlemoyer, Ari Morcos, Ali Farhadi, Ludwig Schmidt

Loss

ViT-Base model

0

5000

10000
lteration

15000

20000

What can go wrong with Adam?

ViT-Large model

Loss

0 5000 10000 15000 20000
lteration

Betal = 0.9, Beta2 = 0.99

Loss

ViT-Huge model

0

5000

10000
lteration

15000

20000

Loss

ViT-Base model

=8 v ‘N.W Y N s, P

5000 10000 15000 20000
lteration

— pheta2 = 0.99

Tuning more AdamW beta2 values

ViT-Large model

10
g - \ WMM
\\ D I s P
n 07 B 0
n Vp)
g | g
4 T ’II
. \
O | | | | |
0 5000 10000 15000 20000
lteration
— peta2 = 0.98 — peta2 = 0.95 beta2 = 0.9

ViT-Huge model

v%‘&%;‘*.ﬁ"&m‘!

ae o

0

5000

beta2 = 0.5

10000 15000 20000
lteration

The second moment estimator becomes out-of-date, leading to updates which are too large.

Let’s track how good of an estimator we have for the squared gradient... the following aggregate quantity should be approx 1

Can we search for a causal relationship between an RMS spike and a loss spike?

RMS spikes in the patch embedding layer come _before_ loss spikes

; M === RMS spike preceeding loss spike —— beta2 = 0.98 —— beta2 = 0.9
| : :
| | |
5 75 i i i
wn I | :
5.0 I W : i 1
Aoty \ A NN N AR INRARS AN \NAAAGIARAAMIW MRV K VAR OMRAPIRA
2500 2600 2700 2800 2900 3000
visual.coriv weight i :
4 : l
¥ !
s 3 |
o 2 .
1 ' .
2500 2600 2700 2800 2900 3000

lteration

This Is Just one example... let’'s come up with heuristic for
documenting loss/rms spikes and use this for analysis

10.0
7.5 1
5.0 -
2.5 1

Loss

ViT-Huge, Beta2 = 0.99

—— Loss

Loss spike 1-8 iterations
after RMS spike (7 out of 7)

Loss spike not 1-8 iterations
after RMS spike (0 out of 7)

5000 7500 10000

12500 15000 17500 20000

B] ViT-Huge, Beta2 = 0.99

—— RMS (visual.convl.weight)
RMS spike (total 25)

7500 10000

12500 15000 17500 20000

Loss
ol
o

ViT-Huge, Beta2 = 0.98

— |OSS

Loss spike 1-8 iterations
after RMS spike (7 out of 8)

1T Loss spike not 1-8 iterations

1 after RMS spike (1 out of 8)

;_:_: s T I N I I I I |
2500 5000 7500 10000 12500 15000 17500 20000

ViT-Huge, Beta2 = 0.98

—— RMS (visual.convl.weight)
RMS spike (total 41)

2500 5000 7500 10000

12500 15000 17500 20000

Chance of a loss spike randomly following an RMS spike is 1.0%

10.0

ViT-Huge, Beta2 = 0.99 A
75 : —— Loss
n Loss spike 1-8 iterations
S 5.0 - after RMS spike
— . Loss spike not 1-8 iterations M
2.3 1 . after RMS spike
0.0 | | | . | | . .
2800 3000 3200 3400 3600 3800 4000 4200
ViT-Huge, Beta2 = 0.99 : :
4 - RMS (visual.convl.weight)
N RMS spike
=
X 2 A
O | | | | | | |
2800 3000 3200 3400 3600 3800 4000 4200

lteration

For later layers, RMS spikes are postdictive not predictive of loss
spikes

Loss

Loss

10.0

ViT-Huge, Beta2 = 0.99

—— Loss
7.5 - . . .
Loss spike 1-8 iterations
5.0 - after RMS spike (0 out of 7)
== = TR RN ~ Loss spike not 1-8 iterations
2.5 7 I - after RMS spike (7 out of 7)
0.0 L: :I : : : :I | | | | |
0 2500 5000 7500 10000 12500 15000 17500 20000
ViT-H , Beta2 = 0.99 : :
4 - . - HYs e RMS (block.20.attn.in_proj)
N RMS spike (total 7)
=
X 2 -
O | | | | | | |
0 2500 5000 7500 10000 12500 15000 17500 20000
10.0 ViT-Huge, Beta2 = 0.98
75 —— Loss
' . - . ~ Loss spike 1-8 iterations
5.0 - gt 11 : : after RMS spike (0 out of 8)
o D i : ~ Loss spike not 1-8 iterations
2.5 7 . = = = after RMS spike (8 out of 8)
0.0 S .- — | | e ——
0 2500 5000 7500 10000 12500 15000 17500 20000
ViT-H , Beta2 = 0.98 : :
4 - S RMS (block.20.attn.in_proj)
N RMS spike (total 4)
=
o 2 -
O | | | | | | |
0 2500 5000 7500 10000 12500 15000 17500 20000

lteration

e Has this ever been encountered before?

e Yes, Shazeer and Stern found an out of date second moment estimator when
developing AdaFactor and running experiments without warm-up

 They propose a fix called “update clipping”
 Does anyone use “update clipping”?

 No, because people do not get good performance with AdaFactor, but this is
for other reasons (most likely the factored moments)

e So... let’s try AdamW + update clipping and refer to the result as StableAdamW

Slow down learning (reduce learning rate) if second moment estimator out of date

Algorithm 2 StableAdamW ({at}fzo,ﬁl,ﬁg, e)

Vo, Ug — 0
fort=1to 1T do
gt = V f(0;)

// apply correction term to debias moving avg.
n 1_pgt—1
b1 = p1- 1?}3{
n 1_pgt—1
B2 = P2 - 1_525
update moving averages
// upc g g

v = 51% 1+ (1 - 51)915

= Bous_1 + (1 — 52)%
/ / for implementation convenience, the steps
// below occur independently for each tensor
RMS; = /E [g? /u]
// update parameters
Nt = o /max (1, RMS;)
Oy = 0:1 — ap N0y 1 + ﬁtvt/ (\@ -+ E)

L oss

10

ViT-Huge, Beta2 = 0.99

— default
—— 4 grad clipping
+ update clipping

B R s ot B amt.

2500 5000 7500 1000012500150001750020000
lteration

Zero-shot ImageNet accuracy

58.0
57.5
57.0
56.5
56.0
55.5
55.0

0.5

0.8

0.9

ViT-Huge

B

0.95
Beta?2

—@— default
+ grad clipping
+ update clipping

0.98 0.99 0.995

Other tips & tricks for optimization

 Use around 5000 iterations of linear warm-up for the learning rate

o After that, use cosine-decay

In things still go wrong...

Empirical Learning Rate

* Inspect your data

1.2e-4
_ 1.0e-4 \
 Use a smaller learning rate

 Using bf16 instead of fp16

Learning Rate

Ok 20k 40k 60k 80k 100k 120k 140k
lterations

Figure 1: Empirical LR schedule. We found that low-
ering learning rate was helpful for avoiding instabili-
ties.

What we didn’t cover and may be important

e Scaling learning rate and initialization based on width!

Model Name Nparams MNlayers @model Mheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 M 2.0 x 10~4
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 104
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 104
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

* There are other fixes for this, including scaling LR by RMS(weights) (see
PalLM paper), or “principled” approaches such as mu-transfer

Tensor Programs V:
Tuning Large Neural Networks via
Zero-Shot Hyperparameter Transfer

Standard Practice Our Work
7.0
Greg Yang** Edward J. Hu* X" Igor Babuschkin® Szymon Sidor° Xiaodong Liu* 6.5
David Farhi® Nick Ryder® Jakub Pachocki® Weizhu Chen* Jianfeng Gao* '
* Microsoft Corporation °OpenAl
n 6.0
0
O
— 5.5
Abstract c
c 5.0
Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively ©
so for neural networks (NNs) with billions of parameters. We show that, in the =45
recently discovered Maximal Update Parametrization (©P), many optimal HPs L
remain stable even as model size changes. This leads to a new HP tuning paradigm N I e ST L
we call uTransfer: parametrize the target model in uP, tune the HP indirectly on a i ,
smaller model, and zero-shot transfer them to the full-sized model, i.e., without 35 —— 8192 optimum shifts optimum stable =
directly tuning the latter at all. We verify pTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperl;orm pu%lished num%eprs of BEI%T—large (350M parameters), Iv)vith a total —-20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
tuning cost equivalent to pretraining BERT-large once; 2) by transferring from log,LearningRate log,LearningRate

40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github. com/microsoft/mup and installable via pip
install mup.

