
Homework #1

CSE 493S/599S: Advanced Machine Learning
Prof. Ludwig Schmidt

Due: Thursday, April 27th at 11:59pm

The goal of this homework is to help you better understand the ideas from
theoretical machine learning we have covered in class.

Notes:

• Please submit this homework to Gradescope and link each page of your
work to the corresponding problem.

• List every person with whom you discussed any problem in any depth, and
every reference (outside of our course slides, lectures, and textbook) that
you used.

• You may spend an arbitrary amount of time discussing and working out a
solution with your listed collaborators, but do not take notes, photos,
or other artifacts of your collaboration. Erase the board you were
working on, and once you’re alone, write up your answers yourself.

• The homework problems have been carefully chosen for their pedagogical
value and hence might be similar or identical to those given out in similar
courses at UW or other schools. Using any pre-existing solutions from
these sources, from the Web or other textbooks constitutes a violation of
the academic integrity expected of you and is strictly prohibited.

Version history:

V1 Initial version.

V2 Added Problem 5.

V3 Corrected definition of D(S) in Problem 5.1.

V4 (this version) Fixed typos in Problem 5.1.2.
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1 ERM and axis aligned rectangles
An axis aligned rectangle classifier in the plane is a classifier that assigns the
value 1 to a point if and only if it is inside a certain rectangle. Formally, given
real numbers a1 ≤ b1, a2 ≤ b2, define the classifier h(a1,b1,a2,b2) by

h(a1,b1,a2,b2) =
{

1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2

0 otherwise
.

The class of all axis aligned rectangles in the plane is defined as

H2
rec = {h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2}

Note that this is an infinite size hypothesis class. Throughout this exercise we
rely on the realizability assumption.

(1) Let A be the algorithm that returns the smallest rectangle enclosing all
positive examples in the training set. Show that A is an ERM.

(2) Show that if A receives a training set of size ≥ 4 log(4/δ)
ϵ then, with prob-

ability of at least 1 − δ it returns a hypothesis with error of at most
ϵ.

Hint: Fix some distribution D over X , let R∗ = R(a∗
1, b∗

1, a∗
2, b∗

2) be the
rectangle that generates the labels, and let f be the corresponding hypoth-
esis. Let a1 ≥ a∗

1 be a number such that the probability mass (with respect
to D) of the rectangle R1 = R(a∗

1, a1, a∗
2, b∗

2) is exactly ϵ/4. Similarly, let
b1, a2, b2 be numbers such that the probability masses of the rectangles
R2 = R(b1, b∗

1, a∗
2, b∗

2), R3 = R(a∗
1, b∗

1, a∗
2, a2), R4 = R(a∗

1, b∗
1, b2, b∗

2) are all
exactly ϵ/4. Let R(S) be the rectangle returned by A. See illustration in
Fig. 1.

(a) Show that R(S) ⊆ R∗.

(b) Show that if S contains (positive) examples in all of the rectangles
R1, R2, R3, R4, then the hypothesis returned by A has error of at
most ϵ.

(c) For each i ∈ {1, . . . , 4}, upper bound the probability that S does not
contain an example from Ri.

(d) Use the union bound to conclude the argument.

(3) Repeat the previous question for the class of axis aligned rectangles in Rd.

(4) Show that the runtime of applying the algorithm A mentioned earlier is
polynomial in d, 1/ϵ, and in log(1/δ).
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Figure 1: Axis aligned rectangles

[30 points]
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2 The Bayes optimal predictor
Show that for every probability distribution D, the Bayes optimal predictor fD is
optimal, in the sense that for every classifier g from X to {0, 1}, LD(fD) ≤ LD(g).

Hint: For x ∈ X , let αx denote the conditional probability of a positive label
given x. Show that P[fD(X) ̸= y |X = x] = min{αx, 1 − αx} and that for
any classifier g : X → {0, 1}, we have P[g(X) ̸= y |X = x] ≥ min{αx, 1 − αx}.
Finally, conclude that LD(fD) ≤ LD(g).

[20 points]
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3 VC-dimension of axis aligned rectangles
Let Hd

rec be the class of axis aligned rectangles in Rd. Prove that VCdim(Hd
rec) =

2d.

[20 points]
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4 Infinite VC-dimension with one parameter
It is often the case that the VC-dimension of a hypothesis class equals (or can
be bounded above by) the number of parameters one needs to set in order
to define each hypothesis in the class. For instance, if H is the class of axis
aligned rectangles in Rd, then VCdim(H) = 2d, which is equal to the number of
parameters used to define a rectangle in Rd. Here is an example that shows that
this is not always the case. We will see that a hypothesis class might be very
complex and even not learnable, although it has a small number of parameters.

Consider the domain X = R, and the hypothesis class

H = {x 7→ ⌈sin(θx)⌉ : θ ∈ R}

(here, we take ⌈−1⌉ = 0). Prove that VCdim(H) =∞.

Hint: There is more than one way to prove the required result. One option
is by applying the following lemma: If 0.x1x2x3 . . ., is the binary expansion of
x ∈ (0, 1), then for any natural number m, ⌈sin(2mπx)⌉ = (1− xm), provided
that ∃k ≥ m s.t. xk = 1.

[30 points]
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5 The perceptron
The perceptron is a classical algorithm for learning a separating hyperplane
of a dataset S = {(xi, yi)}n

i=1 ⊂ Rd × {−1, 1}. It is presented in the following
psuedocode:

Algorithm 1: Perceptron
1 w0 ← 0
2 while wt does not separate the data do
3 Select a random index it ∈ {1, . . . , n}
4 if yit

w⊤
t xit

< 1 then
5 wt+1 ← wt + yit

xit
// correct a margin mistake

6

7 else
8 wt+1 ← wt

9 t← t + 1
10 end
11 return wt

The perceptron happens to be equivalent to learning a linear separator using
SGD and the hinge loss! In this problem, we will prove some famous results
about the perceptron.

5.1 Mistake bound
First, we will show that the perceptron performs well on the training data
(denoted S) using a mistake bound. In particular, we will show that if there
exists a linear separator of the training data, then the perceptron will find it
provided the margin of S is not too small.

The margin is first defined for a particular hyperplane Hw = {x : w⊤x = 0}
corresponding to a vector w ∈ Rd. Supposing that Hw perfectly separates S, we
define the margin γ(S, w) as the smallest distance between a point in S and a
point in Hw:

γ(S, w) = dist(S,Hw)
where dist(A, B) = min(∥a− b∥ : a ∈ A, b ∈ B).

The margin of S is then defined as the largest margin achievable by any w:

γ(S) = max
∥w∥=1

γ(S, w).

Additionally, define the diameter of S to be D(S) = max(x,y)∈S∥x∥.

Our goal in this section is to prove the following theorem:

Theorem 5.1. Algorithm 1 makes at most (2 + D(S)2)/γ(S)2 mistakes on any
sequence of examples S that can be perfectly linearly separated.
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The proof of this theorem can be broken into parts:

(1) First, we will upper bound ∥wt∥. In particular, show that

∥wt+1∥2 ≤ ∥wt∥2 + 2 + D(S)2.

Now, let mt be the total number of mistakes made by Algorithm 1 during
the first t iterations. Use the previous result to show that

∥wt∥ ≤
√

mt(2 + D(S)2).

[8 points]

(2) Next we will lower bound ∥wt∥. Start by showing that for any unit vector
w that perfectly separates S, we have

⟨w, wt+1 − wt⟩ ≥ γ(S, w).

when we make a mistake at iteration t.

Let unit vector w⋆ denote the hyperplane achieving the maximum margin
γ(S). Use the previous result to show that

⟨w⋆, wt⟩ ≥ mtγ(S).

Use this to obtain a lower bound for ∥wt∥. [8 points]

(3) Combine the two bounds to obtain a bound on the number of mistakes
mt. [4 points]

[total 20 points]
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5.2 Generalization bound
Let us assume that the data S was drawn i.i.d. from a fixed underlying distribution
D which is linearly separable. In the previous section, we saw that Algorithm 1
finds a linear predictor for S. Now we will show that this predictor also works
on new data drawn from D! In particular, use the result from the previous
subsection to give a proof of the following theorem:

Theorem 5.2. Let Sn denote a set of n i.i.d. samples from D. Let w(S) be
the output of Algorithm 1 on dataset S. Let Z = (X, Y ) be an additional
independent sample fromn D. Then,

P[Y w(Sn)⊤X < 1] ≤ 1
n + 1 ESn+1

[
2 + D(Sn+1)2

γ(Sn+1)2

]
.

Hint: Note that:

(i) Z can be swapped with any entry of Sn without changing the distribution
of outcomes.

(ii) If for some S, the perceptron never makes a mistake on example s ∈ S,
then w(S) = w(S \ s). This implies that w(S \ s) will predict s correctly.

Use the mistake bound from earlier to show that the reasoning in (ii) will apply
to many examples.

[20 points]

9


