
CSE 599 Empirical Foundations 
of Machine Learning

University of Washington, Autumn 2021

Normally class starts at 10 am, today 10:05 so people can find the room.



Welcome!



Introduction
Instructor: Ludwig Schmidt

MIT (PhD)  →  Berkeley (postdoc)  → UW (faculty) - started this fall.

Research interests: exactly this class!

TA: Mitchell Wortsman

UW (3rd year PhD student advised by Ali Farhadi)

Research interests: still narrowing it down …



1. Logistics

2. Background & motivation

3. Course outline



1. Logistics

2. Background & motivation

3. Course outline



Basics
Room: CSE2 G04  (Gates building)

Website: https://mlfoundations.github.io/au21/   (announcements, material, etc.)

Registration: Now available! (see link on website)

Ask questions any time!

Please provide feedback if you see things we can improve or suggestions for topics

Time: Tuesday / Thursday 10 - 11:20 am

https://mlfoundations.github.io/au21/


Communication: Mattermost
Similar to Slack but FERPA-compliant (Family Educational Rights and Privacy Act) 

Should be accessible by anyone at UW

         (may require a request if not CSE)

Please log in if you have not already 
         done so!   (It’s easy)

Feel free to ask any questions related to

        the course, post papers, etc.



(Remote) Attendance

We have a Zoom link for a few people who cannot

        join in person, but the link is secret :-)

In-person attendance is strongly encouraged.

    → Experience will be better, especially for discussions.

If you cannot join for a specific session, message

        Mitchell and me the day before and we will send you the link.
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Self-driving cars

Medical imaging Voice assistants

Robotics



What are the key advancements?

13

Progress in multiple areas of machine learning with similar approach: deep learning

• Computer vision


• Automatic speech recognition


• Natural language processing


• Game playing (Go, Atari, Starcraft, DotA)

Focus today: computer vision



[Deng, Dong, Socher, Li, Li, Fei-Fei’09]
[Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg Fei-Fei’15] 14



ImageNet

Golden retriever

Great white shark

Minibus

Large image classification dataset: 1.2 mio training images, 1,000 image classes.
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ImageNet History
Key person: Fei-Fei Li

Assistant prof at Princeton starting 2007

Princeton is also home to the WordNet project

Hierarchical database of words in English and other languages
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ImageNet History
Fei-Fei’s vision (2006 — 2007):

• Humans know thousands of visual categories (neuroscience).

• If we want human-like computer vision, we need correspondingly large datasets.

Let’s populate all of WordNet with around 1,000 images per node!

About 50 million images for about 50,000 classes  (nouns in WordNet)

Context: PASCAL VOC 
• Most active object detection / classification dataset from 2005 - 2012 

• Largest version (2012): 12,000 images total for 20 classes

(Planned) ImageNet is 1000x larger!
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Main student: Jia Deng  (now back at Princeton as faculty)

Where do you get 50 million images?

How do you label them?

[Deng, Dong, Socher, Li, Li, Fei-Fei’09]
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Building ImageNet
Main student: Jia Deng  (now back at Princeton as faculty)

Where do you get 50 million images?

Internet!  (increasing amount of consumer photos)

How do you label them?

Internet!  (Crowdsourcing platforms)

+ lots of clever task design

[Deng, Dong, Socher, Li, Li, Fei-Fei’09]+ lots of hard work
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ImageNet Competition

Alex Berg  (prof at UNC and research scientist at FAIR)

ImageNet was about 10% done (already 5 million images!)

Let’s make it a competition!

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Olga Russakovsky (student then postdoc at Stanford)

“Small” version of ImageNet: 1,000 classes, 1.2 million images

“ImageNet” has become equivalent to ILSVRC 2012





ImageNet Classification Task
Training data: 1.2 million images for 1,000 classes  (roughly class-balanced)


Validation set: 50,000 images for 1,000 classes (exactly class-balanced)
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ImageNet Classification Task
Training data: 1.2 million images for 1,000 classes  (roughly class-balanced)


Validation set: 50,000 images for 1,000 classes (exactly class-balanced)


Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)

Evaluation metric:  Top-5 accuracy

•Five predictions per image

•Prediction counts as correct if the image label is among the five predictions

Why? Sometimes multiple labels per image, sometimes unclear class boundaries.
+ task is already hard enough



n03950228     pitcher, ewer

WordNet ID (wnid) Synonym set





n02488702     colobus, colobus monkey





n03026506     Christmas stocking






n02950826     cannon





n02094258     Norwich terrier





n02412080    ram, tup





n04613696     yurt





n01687978     agama





n02134418     sloth bear, Melursus ursinus, Ursus ursinus





n04591713     wine bottle



11 teams 4 teams 6 teams



AlexNet



AlexNet
Large convolutional neural network (CNN)


Basic idea like in the late 80s, many “tricks” to get it to work on ImageNet

Structured, learnable linear layer followed by a simple element-wise non-linearity
Basic building block:

Repeat the building block several times, add a classification loss at the end.



AlexNet Ingredients
ReLU (rectified linear unit) non-linearity

Training on GPUs

Local response normalization

Overlapping pooling

Dropout

Data augmentation

Why these? Each change lead to 0 - 2 percentage points of accuracy improvement.



AlexNet Background
Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”

Built a smaller image classification dataset CIFAR-10

• 50,000 images

• 10 classes

• 32x32 pixels

• Subset of a large dataset TinyImages (80 million images)



AlexNet Background
Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”

Built a smaller image classification dataset CIFAR-10

• 50,000 images

• 10 classes

• 32x32 pixels

• Subset of a large dataset TinyImages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

Good results, so they decided to scale up the approach



AlexNet Background
Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”

Built a smaller image classification dataset CIFAR-10

• 50,000 images

• 10 classes

• 32x32 pixels

• Subset of a large dataset TinyImages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

Good results, so they decided to scale up the approach

Alex tuned the model for one year on ImageNet



AlexNet Results

About 9 percentage points improvement over previous state-of-the art



Immediate Controversy in 2012
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Immediate Controversy in 2012









NOTE: Alyosha is a great scientist.

           When he’s wrong, he’s happy to admit it and he is wrong in interesting ways.



11 teams 4 teams 6 teams



11 teams 4 teams 6 teams 24 teams 32 teams 68 teams 84 teams 28 teams

Large improvement, new method Tremendous interest from the community
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Impact on ImageNet
Effectively every team switches to convolutional neural networks. 

Subsequent networks
• VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters

• ResNet (2015): 150 layers, more parameters

• Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet, 
MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.

Training times increase to weeks on dozens of GPUs ($30k) …

… and decrease by orders of magnitude ($100 for a ResNet)



Impact on Computer Vision
Effectively the entire field switches to convolutional neural networks. 

• Object detection


• Image segmentation


• Pose estimation


• 3D reconstruction


• Image inpainting


• Generative models


• etc. Deep learning revolution in computer vision
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Historical Comparison - Revolutions
10k more

than Marx!



Historical Comparison - Revolutions

CAVEAT:  D O   N O T   M E A S U R E   S C I E N C E   
B Y   C I T A T I O N   C O U N T 

10k more

than Marx!



Similar Performance Trends for Many Other Datasets
Object detection (PASCAL VOC)
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Object Detection (MS COCO)

https://paperswithcode.com/sota
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https://paperswithcode.com/sota
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Machine Translation (WMT EN-DE)



Question Answering (SQuAD 1.1)
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Language Modeling (WikiText-103)



Key points
Field largely guided by benchmarks

Small number of key datasets for each task (image classification, detection, etc.)

Algorithmic / model innovations justified by improvements on benchmarks

Little to no mathematical theory 

Substantial progress on a wide range of benchmarks

Algorithmic innovations usually tested on multiple datasets



Culture shift
2000 - 2010 2010 - 2020

Empirical progress usually goes

    hand in hand with theoretical results

Empirical progress usually comes

    without mathematical theory

• Support vector machines & kernels


• Boosting


• Matrix factorization and tensor 
methods


• Compressed sensing / high-dim stats


• Convex optimization

• Convolutional neural networks


• Recurrent neural networks


• Transformers (NLP)


• Network architecture improvements


• Zoo of different architectures



Culture shift
2000 - 2010 2010 - 2020

Empirical progress usually goes

    hand in hand with theoretical results

Empirical progress usually comes

    without mathematical theory

Emphasis on provable guarantees Emphasis on benchmarks

Optimization problems often convex Non-convexity is fine

Large-scale purely experimental workNo specialized hardware



Still major caveats with benchmarks
Excitement about experimental results, rapid growth in machine learning

But: even results on datasets like ImageNet remained controversial until recently.

One common criticism: overfitting from test set re-use



Ideal ML Workflow
1. Collect data
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Typical ML Workflow

Training set Test set

1. Download data

     (fixed split)

2. Download model

4. Compute final test accuracy

90%

3. Train and tune model 67



Danger with Test Set Re-Use: Overfitting

68

Classifier results

      over time

No change (y 
= x)

Overfitting from 
    test set re-use 

Maybe we are just incrementally fitting to more and more random noise.



To be clear: We now know that there is no evidence of 
overfitting through test set re-use on many 

contemporary ML benchmarks (e.g., ImageNet)

However, the community was majorly 
confused about this.

We can learn from this story.



[…] we should not use [the test set] for model fitting or 
model selection, otherwise we will get an unrealistically 
optimistic estimate of performance of our method. This is 
one of the “golden rules” of machine learning research.

Chapter 1:

Textbooks



Slides from a Stanford NLP Class



Research Papers, e.g., PASCAL VOC
“Withholding the annotation of the test data until completion of 
the challenge played a significant part in preventing over-fitting 
of the parameters of classification or detection methods. In the 
VOC2005 challenge, test annotation was released and this led to 
some “optimistic” reported results, where a number of 
parameter settings had been run on the test set, and only 
the best reported. This danger emerges in any evaluation 
initiative where ground truth is publicly available.”

(Note: I searched for a while, there is not a single documented case of overfitting

 through test set re-use on PASCAL VOC. Alyosha helped with this.)

+ several more mentions of “danger of overfitting” in the various PASCAL papers.



Context: a group had just released a new test set for MNIST

Invented CNNs, won a Turing award

MNIST: digit classification

60k train, 10k test

10 classes

Released in 1998

Oldest widely used dataset

Now considered “easy”



I can’t really estimate the numbers, but knowing what we know about multiple testing 
does anyone really believe the SOTA rush in the mid 2010s was anything but 
crowdsourced overfitting?

https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/
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We tested for Overfitting

Outcome: There is actually no overfitting from test set re-use at all on ImageNet.

Meta-outcome: A lot of people were really confused about this.



AlexNet Results
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AlexNet Results

88,000 citations, Turing award, transformation of computer science

About 9 percentage points improvement over previous state-of-the art

???



An analogy to complexity theory
P vs NP is one of the core problems in theoretical computer science - why?

Quick complexity recap

P: set of problems solvable in polynomial time

    (Sorting, shortest paths, linear programming, matrix multiplication, etc.)

NP: set of problems solvable in polynomial time on a non-deterministic Turing machine

      (Satisfiability, traveling salesman problem, vertex cover, etc.)

A lot of important computational problems are in either P or NP.



NP-Completeness
A key property of many important problems in NP: they are NP-complete.

If you can solve a single NP-complete 
problem in polynomial time, you can solve 
all problems in NP in polynomial time.

This is formally established via reductions between problems.

By now there are thousands of NP-complete problems.

All of them have the same computational hardness,

up to polynomial factors in the running time.

Big open question (P vs NP): is there a poly-time algorithm for any of these problems?
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Complexity theory beyond P vs NP

Source: 
Complexity Zoo

Complexity theory has built a rich hierarchy

      of computational problems.

Many advantages, e.g., can quickly put

a new computational problem in context.

Similar story in optimization: linear programs,

      quadratic programs, semi-definite programs, etc.

How does a similar problem hierarchy for 
data distributions and tasks in machine 
learning (across vision, NLP, etc.) look?



Not all is well: failures of benchmarks
Different field: recommender systems



Recommender Systems & Matrix Factorization

Movies

Users



“State of the Art”



Actual State of the Art

Known baselines



Danger with Empirical Evaluations
Difficulty of properly running baselines


Variations in tasks (exact dataset, evaluation metric, etc.)


Incentives around baselines

Standardized, competitive benchmarks address these points

Standard computer vision benchmarks (CIFAR-10, ImageNet, COCO) are

        so competitive that missed baselines seem unlikely by now.

What makes a good ML evaluation?





Questions

Why does progress on ImageNet lead to progress on many other tasks and datasets?

What tasks and datasets does ImageNet progress not help on?

How well do models with 90% top-1 accuracy on ImageNet really work?

What is the role of ImageNet in this story? What makes a good ML dataset?

How reliable are performance measurements on ML benchmarks?

What kind of answers am I looking for?



Why empirical foundations?
It’s interesting!  Lots of progress over the past years, still not well understood.

People expect more: reliability, fairness, security, etc.

Are the investments in ML going to the right problems?

Not all is well: many papers with failed evaluations, etc.

It leads to better methods!









Caveats
This class takes a technical perspective on ML.

A narrow technical focus can obscure ethical questions.

But: research on ethical questions in machine learning needs solid foundations, too.  

A course on empirical foundations of ML is largely new.
(It still rests on decades of work in other fields - research validity is not new.)

We’re going to figure some things out as we go through the quarter.
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Course Outline
Main parts of the class

1. Fundamentals: applied stats, causality, a bit of philosophy of science  (5 lectures)

2. Paper discussions: both “classical” and recent papers  (5 lectures)

3. Guest speakers (Alec Radford 🤞, Nicholas Carlini, and more)  (3 lectures)

4. Student project presentations: initial overview and final presentations  (3 lectures)

5. Practical tooling for empirical ML (favorite Python packages, etc.)   (1 lecture)



Grading & project
Grading: 20% participation in class discussions, 80% research project.

Project
Theme: broadly around datasets, evaluation, robustness


Can be research you are already doing


Team size 1 - 3


Proposals due at the beginning of the 4th lecture (October 12)


Next lecture: some inspiration



Thanks!


Questions?


