CSE 599 Empirical Foundations of Machine Learning University of Washington, Autumn 2021

Normally class starts at 10 am, today 10:05 so people can find the room.

Welcome!

Introduction

Instructor: Ludwig Schmidt Research interests: exactly this class!

TA: Mitchell Wortsman Research interests: still narrowing it down ...

- MIT (PhD) \rightarrow Berkeley (postdoc) \rightarrow UW (faculty) started this fall.

- UW (3rd year PhD student advised by Ali Farhadi)

1. Logistics

2. Background & motivation

3. Course outline

1. Logistics

2. Background & motivation

3. Course outline

Room: CSE2 G04 (Gates building)

Time: Tuesday / Thursday 10 - 11:20 am

Registration: Now available! (see link on website)

Please provide feedback if you see things we can improve or suggestions for topics

Ask questions any time!

Basics

Website: <u>https://mlfoundations.github.io/au21/</u> (announcements, material, etc.)

Communication: Mattermost

Should be accessible by anyone at UW (may require a request if not CSE)

Please log in if you have not already done so! (It's easy)

Feel free to ask any questions related to the course, post papers, etc.

Similar to Slack but FERPA-compliant (Family Educational Rights and Privacy Act)

Help

In-person attendance is **strongly** encouraged. \rightarrow Experience will be better, especially for discussions.

We have a Zoom link for a few people who cannot join in person, but the link is secret :-)

If you cannot join for a specific session, message Mitchell and me the day before and we will send you the link.

(Remote) Attendance

1. Logistics

2. Background & motivation

3. Course outline

Explosive Growth in ML

THE

to a

VEW YORKER

OCT. 23, 2017

PRICE \$8.99

The New York Times Magazine

Account ~

FEATURE

The Great A.I. Awakening

How Google used artificial intelligence to transform Google Translate, one of its more popular services and how machine learning is poised to reinvent computing itself.

Statistics of acceptance rate NeurIPS

Papers submittee Papers accepted Acceptance rate

Berkeley News Research - People - Campus & community

CAMPUS & COMMUNITY, CAMPUS NEWS

Berkeley inaugurates Division of Data Science and Information, connecting teaching and research from all corners of campus

11

Berkeley News Research - People -

CAMPUS & COMMUNITY, CAMPUS NEWS

Berkeley inaugurates Division of Data Science and Information, connecting teaching and research from all corners of campus

=	WIRED	BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY
		LICH.I COOCI C
		- MHLHINE LEF
		STEVEN LEVY BACKCHANNEL 06.22.2016 12:00 AM
		How Google is Remaking Itself as a
_		If you want to build artificial intelligence into every product, you better retrain

11

your army of coders. Check.

Berkeley News

Research **T**

CAMPUS & COMMUNITY, CAMPUS NEWS

Berkeley inaugurates Division o research from all corners of can

 \equiv WIRED BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURIT "MFI гпмрамч BACKCHANNEL 06.22.2016 12:00 AM STEVEN LEVY If you want to build artificial intelligence into every product, you better retrain your army of coders. Check.

Campus & community PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

Allen School News

Search for:

Follow @csenews on Twitter 🔽 🛛 Get Email Notifications 🗠

and Information, connecting tea New NSF AI Institute for Foundations of Machine Learning aims to address major research challenges in artificial intelligence and broaden participation in the field

The University of Washington is among the recipients of a five-year, \$100 million investment announced today by the National Science Foundation (NSF) aimed at driving major advances in artificial intelligence research and education. The NSF AI Institute for Foundations of Machine Learning (IFML) — one of five new NSF AI Institutes around the country — will tap into the expertise of faculty in the Allen School's Machine Learning group and the UW Department of Statistics in collaboration with the University of Texas at Austin, Wichita State University, Microsoft Research, and multiple industry and government partners. The new institute, which will be led by UT Austin, will address a set of fundamental problems in machine learning research to overcome current limitations of the field for the benefit of science and society.

"This institute tackles the foundational challenges that need to be solved to keep AI on its current trajectory and maximize its impact on science and technology," said Allen School professor and lead co-principal investigator Sewoong Oh in a UW News release. "We plan to develop a toolkit of advanced algorithms for deep learning,

Time

Maps Natural language understanding Photos Robotics research Speech Translation YouTube ... many others

How Google is Remaking Itself as a "Machine Learning First" Company

11

Berkeley News

Research **•**

CAMPUS & COMMUNITY, CAMPUS NEWS

Berkeley inaugurates Division o and Information, connecting tea New NSF AI Institute research from all corners of can

 \equiv WIRED BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY HOW GE Austin, will address a set of fundame of the field for the benefit of science "This institute tackles the foundation maximize its impact on science and "MACHI Sewoong Oh in a UW News release. BACKCHANNEL 06.22.2016 12:00 AM STEVEN LEVY If you want to build artificial intelligence into every product, you better retrain your army of coders. Check.

United States should make a massive investment in Al, top Senate Democrat says

By Jeffrey Mervis | Nov. 11, 2019, 11:45 AM

The top Democrat in the U.S. Senate wants the government to create a new agency that would invest an additional \$100 billion over 5 years on basic research in artificial intelligence (AI). Senator Charles Schumer (D-NY) says the initiative would enable the United States to keep pace with China and Russia in a critical research arena and plug gaps in what U.S. companies are unwilling to finance.

Time

How Google is Remaking Itself as a "Machine Learning First" Company

11

Self-driving cars

Robotics

Self-driving cars

Medical imaging

Robotics

Self-driving cars

Medical imaging

Robotics

What are the key advancements?

Progress in multiple areas of machine learning with similar approach: deep learning

- Computer vision
- Automatic speech recognition
- Natural language processing
- Game playing (Go, Atari, Starcraft, DotA)

Focus today: computer vision

[Deng, Dong, Socher, Li, Li, Fei-Fei'09] [Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg Fei-Fei'15] 14

Large image classification dataset: 1.2 mio training images, 1,000 image classes.

Golden retriever

Great white shark

Progress over the past decade:

ILSVRC top-5 Error on ImageNet

Progress over the past decade:

ILSVRC top-5 Error o	"It is my opinion that the following					
	paper is the most impactful paper					
	machine learning and computer visi					
	in the last five years."					
	Jitendra Malik, CACM June 2017					
2013 2014	Human	2015	2016	2017		
ImageNet competition year						

Progress over the past decade:

Economic Report of the President

Together with The Annual Report of the Council of Economic Advisers

March 2019

st decade:

Key person: Fei-Fei Li

Assistant prof at Princeton starting 2007

Key person: Fei-Fei Li

Assistant prof at Princeton starting 2007

Princeton is also home to the **WordNet** project Hierarchical database of words in English and other languages

dog, domestic dog, Ca	nis familiaris
\square canine, canid	
└─ carnivore	
🖵 placental, pl	acental mammal, eutherian, eutherian mammal
└─ mammal	
└─ verte	brate, craniate
└─ cł	nordate
	- animal, animate being, beast, brute, creature,
	L

fauna

Fei-Fei's vision (2006 – 2007):

- Humans know thousands of visual categories (neuroscience).
- If we want human-like computer vision, we need correspondingly large datasets.

Fei-Fei's vision (2006 – 2007):

- Humans know thousands of visual categories (neuroscience).
- If we want human-like computer vision, we need correspondingly large datasets.

- Let's populate all of WordNet with around 1,000 images per node!
- About 50 million images for about 50,000 classes (nouns in WordNet)

Fei-Fei's vision (2006 – 2007):

- Humans know thousands of visual categories (neuroscience).
- If we want human-like computer vision, we need correspondingly large datasets.

Context: **PASCAL VOC**

- Most active object detection / classification dataset from 2005 2012
- Largest version (2012): 12,000 images total for 20 classes

- Let's populate all of WordNet with around 1,000 images per node!
- About 50 million images for about 50,000 classes (nouns in WordNet)

(Planned) ImageNet is 1000x larger!

Main student: Jia Deng (now back at Princeton as faculty)

Where do you get 50 million images?

How do you label them?

Building ImageNet

[Deng, Dong, Socher, Li, Li, Fei-Fei'09]

Main student: Jia Deng (now back at Princeton as faculty)

Where do you get 50 million images?

Internet! (increasing amount of consumer photos)

How do you label them?

Building ImageNet

[Deng, Dong, Socher, Li, Li, Fei-Fei'09]

fickr

Main student: Jia Deng (now back at Princeton as faculty)

Where do you get 50 million images?

Internet! (increasing amount of consumer photos)

How do you label them?

Internet! (Crowdsourcing platforms) + lots of **clever** task design + lots of **hard** work

Building ImageNet

fickr

[Deng, Dong, Socher, Li, Li, Fei-Fei'09]

ILSVRC2012_val_00047583.JPEG

ILSVRC2012_val_00033445.JPEG

ILSVRC2012_val_00013085.JPEG

ILSVRC2012_val_00009233.JPEG

ILSVRC2012_val_00016541.JPEG

ImageNet was about 10% done (already 5 million images!)

Alex Berg (prof at UNC and research scientist at FAIR)

Let's make it a competition!

ImageNet Competition

ImageNet was about 10% done (already 5 million images!)

Alex Berg (prof at UNC and research scientist at FAIR)

Let's make it a competition!

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Olga Russakovsky (student then postdoc at Stanford)

"Small" version of ImageNet: 1,000 classes, 1.2 million images

"ImageNet" has become equivalent to ILSVRC 2012

ImageNet Competition

IM GENET Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)

Held as a "taster competition" in conjunction with PASCAL Visual Object Classes Challenge 2010 (VOC2010)

Registration Download Introduction Data Task Development kit Timetable Features Submission Citation^{new} Organizers <u>Contact</u>

News

- now available. Please cite it when reporting ILSVRC2010 results or using the dataset.
- For latest challenge, please visit <u>here</u>.
- September 16, 2010: Slides for overview of results are available, along with slides from the two winning teams:

Winner: NEC-UIUC

Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu (NEC). LiangLiang Cao, Zhen Li, Min-Hsuan Tsai, Xi Zhou, Thomas Huang (UIUC). Tong Zhang (Rutgers). [PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

Honorable mention: XRCE

Jorge Sanchez, Florent Perronnin, Thomas Mensink (XRCE) [PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

- seeing you there.
- August 8, 2010: <u>Submission site</u> is up.
- June 16, 2010: Test data is available for <u>download!</u>.
- May 3, 2010: Training data, validation data and development kit are available for <u>download</u>.
- May 3, 2010: <u>Registration</u> is up!. Please register to stay updated.

 September 2, 2014: <u>A new paper</u> which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset, analyzes the results of the past five years of the challenge, and even compares current computer accuracy with human accuracy is

September 3, 2010: Full results are available. Please join us at the VOC workshop at ECCV 2010 on 9/11/2010 at Crete, Greece. At the workshop we will provide an overview of the results and invite winning teams to present their methods. We look forward to

• August 9, 2010: Submission deadline is extended to 4:59pm PDT, August 30, 2010. There will be no further extensions.

• Mar 18, 2010: We are preparing to run the ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)

ImageNet Classification Task

Training data: 1.2 million images for 1,000 classes (roughly class-balanced)

Validation set: 50,000 images for 1,000 classes (exactly class-balanced)

- **Test set:** 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)

ImageNet Classification Task

- Training data: 1.2 million images for 1,000 classes (roughly class-balanced)
- Validation set: 50,000 images for 1,000 classes (exactly class-balanced)
- Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)
- Evaluation metric: Top-5 accuracy
 - •Five predictions per image
 - Prediction counts as correct if the image label is among the five predictions

ImageNet Classification Task

- Training data: 1.2 million images for 1,000 classes (roughly class-balanced)
- Validation set: 50,000 images for 1,000 classes (exactly class-balanced)
- Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)
- Evaluation metric: Top-5 accuracy
 - •Five predictions per image
 - Prediction counts as correct if the image label is among the five predictions

Why? Sometimes multiple labels per ima + task is already hard enough

Why? Sometimes multiple labels per image, sometimes unclear class boundaries.

ILSVRC2012_val_00016541.JPEG

Synonym set

ILSVRC2012_val_00007151.JPEG

ILSVRC2012_val_00007151.JPEG

n02488702 colobus, colobus monkey

n03026506 Christmas stocking

ILSVRC2012_val_00001902.JPEG

ILSVRC2012_val_00001902.JPEG

n02950826 cannon

n02094258 Norwich terrier

ILSVRC2012_val_00016391.JPEG

ILSVRC2012_val_00016391.JPEG

n02412080 ram, tup

ILSVRC2012_val_00020151.JPEG

ILSVRC2012_val_00020151.JPEG

300 400

n04613696 yurt

ILSVRC2012_val_00041169.JPEG

ILSVRC2012_val_00041169.JPEG

n01687978 agama

n02134418

sloth bear, Melursus ursinus, Ursus ursinus

n04591713 wine bottle

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Abstract

AlexNet

Large convolutional neural network (CNN)

Basic idea like in the late 80s, many "tricks" to get it to work on ImageNet

Basic building block:

Structured, learnable linear layer followed by a simple element-wise non-linearity **Repeat** the building block several times, add a classification loss at the end.

AlexNet Ingredients

ReLU (rectified linear unit) non-linearity

Local response normalization

Training on GPUs

Overlapping pooling

Dropout

Data augmentation

Why these? Each change lead to 0 - 2 percentage points of accuracy improvement.

AlexNet Background

Alex' Masters thesis: "Learning Multiple Layers of Features from Tiny Images"

Built a smaller image classification dataset **CIFAR-10**

- 50,000 images
- 10 classes
- 32x32 pixels
- Subset of a large dataset TinyImages (80 million images)

AlexNet Background

Alex' Masters thesis: "Learning Multiple Layers of Features from Tiny Images"

Built a smaller image classification dataset CIFAR-10

- 50,000 images
- 10 classes
- 32x32 pixels
- Subset of a large dataset TinyImages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

Good results, so they decided to scale up the approach

AlexNet Background

Alex' Masters thesis: "Learning Multiple Layers of Features from Tiny Images"

Built a smaller image classification dataset CIFAR-10

- 50,000 images
- 10 classes
- 32x32 pixels
- Subset of a large dataset TinyImages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

Good results, so they decided to scale up the approach

Alex tuned the model for **one year** on ImageNet

AlexNet Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

About 9 percentage points improvement over previous state-of-the art

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Immediate Controversy in 2012

Yann LeCun ▶ Public

+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of a splash. The room was overflowing with people standing and sitting on the floor. There was a lively series of comments afterwards, with +Alyosha Efros, Jitendra Malik, and I doing much of the talking.

Oct 13, 2012

Immediate Controversy in 2012

Yann LeCun ▶ Public

+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of a splash. The room was overflowing with people standing and sitting on the floor. There was a lively series of comments afterwards, with +Alyosha Efros, Jitendra Malik, and I doing much of the talking.

Oct 13, 2012

Svetlana Lazebnik +1 Too bad I couldn't be there! Any take-away points for those of us who couldn't attend? +Alyosha Efros , I'd love to get your take as well!

Immediate Controversy in 2012

Yann LeCun ▶ Public

+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of a splash. The room was overflowing with people standing and sitting on the floor. There was a lively series of comments afterwards, with +Alyosha Efros, Jitendra Malik, and I doing much of the talking.

Yann LeCun

+Svetlana Lazebnik: Our friend +Alyosha Efros said that ImageNet is the wrong task, wrong dataset, wrong everything. You know him ;-) Still, he likes the idea of feature learning.

Oct 13, 2012

Svetlana Lazebnik +1

.

Too bad I couldn't be there! Any take-away points for those of us who couldn't attend? +Alyosha Efros , I'd love to get your take as well!

Something like that...:) I do like feature learning, the less supervised --- the better. So, I am excited that people are working in this direction, but I am not ready to declare success until they can show improvement on PASCAL detection. Basically, I think ImageNet is just too easy (+Yann LeCun did confirm that it's easier than PASCAL in terms of objects being more centered and little scale variation). In my view, the important thing to look at is chance performance. Chance on PASCAL detection is something like 1 in a million. Chance on Imagenet classification is 1 in 200 (easier than Caltech-256!!!). Chance on ImageNet detection is lower but still maybe around 1 in a thousand or so. When chance is so high, the temptation for a classifier to overfit to the bias is in the data is too great. The fact that "t-short" category turned out to be one of the easiest ones for all the classifiers in the competition should give us pause as to whether the task is indeed modeling the complexity of our visual world. What was agreed upon is that, even if deep learning can't be applied to PASCAL detection directly (although I still don't see why not), it should still be possible to use the features learned from ImageNet and then use them on PASCAL instead of HOG. do think it will give some sort of a boost, but I suspect it won't be a huge one.

Oct 14, 2012

Something like that...:) I do like feature learning, the less supervised --- the better. So, I am excited that people are working in this direction, but I am not ready to declare success until they can show improvement on PASCAL detection. Basically, I think ImageNet is just too easy (+Yann LeCun did confirm that it's easier than PASCAL in terms of objects being more centered and little scale variation). In my view, the important thing to look at is chance performance. Chance on PASCAL detection is something like 1 in a million. Chance on Imagenet classification is 1 in 200 (easier than Caltech-256!!!). Chance on ImageNet detection is lower but still maybe around 1 in a thousand or so. When chance is so high, the temptation for a classifier to overfit to the bias is in the data is too great. The fact that "t-short" category turned out to be one of the easiest ones for all the classifiers in the competition should give us pause as to whether the task is indeed modeling the complexity of our visual world. What was agreed upon is that, even if deep learning can't be applied to PASCAL detection directly (although I still don't see why not), it should still be possible to use the features learned from ImageNet and then use them on PASCAL instead of HOG. do think it will give some sort of a boost, but I suspect it won't be a huge one.

Oct 14, 2012

Geoffrey Hinton +31

predicted that some vision people would say that the task was too easy if a neural net was successful. Luckily I know Jitendra so I asked him in advance whether this task would really count as doing proper object recognition and he said it would, though he also said it would be good to do localization too. To his credit, Andrew Zisserman says our result is impressive.

I think its pretty amazing to claim that a vision task is "just too easy" when we succeed even though some really good vision people tried hard at it and failed to do nearly as well. I also think that trying to discredit a system that gets about 84% correct by saying you could get 0.5% correct by chance is a bit desperate.

Something like that...:) I do like feature learning, the less supervised --- the better. So, I am excited that people are working in this direction, but I am not ready to declare success until they can show improvement on PASCAL detection. Basically, I think ImageNet is just too easy (+Yann LeCun did confirm that it's easier than PASCAL in terms of objects being more centered and little scale variation). In my view, the important thing to look at is chance performance. Chance on PASCAL detection is something like 1 in a million. Chance on Imagenet classification is 1 in 200 (easier than Caltech-256!!!). Chance on ImageNet detection is lower but still maybe around 1 in a thousand or so. When chance is so high, the temptation for a classifier to overfit to the bias is in the data is too great. The fact that "t-short" category turned out to be one of the easiest ones for all the classifiers in the competition should give us pause as to whether

Yann LeCun +16

Oct 16, This is not a religious war between deep learning and computer vision. Everyone wins when someone improves a result on some benchmark. No one should feel "defeated", and no one should give up unless they no longer believe in what they are doing. Progress is always exciting, particularly when it comes from a brand new way of doing things, rather than from a carefully tweaked combination of existing methods.

Oct

14,

2012

Geoffrey Hinton +31

predicted that some vision people would say that the task was too easy if a neural net was successful. Luckily I know Jitendra so I asked him in advance whether this task would really count as doing proper object recognition and he said it would, though he also said it would be good to do localization too. To his credit, Andrew Zisserman says our result is impressive.

I think its pretty amazing to claim that a vision task is "just too easy" when we succeed even though some really good vision

> d at it and failed to do nearly as well. I also think scredit a system that gets about 84% correct by ²⁰¹² d get 0.5% correct by chance is a bit desperate.

Something like that...:) I do like feature learning, the less supervised --- the better. So, I am excited that people are working in this direction, but I am not ready to declare success until they can show improvement on PASCAL detection. Basically, I think ImageNet is just too easy (+Yann LeCun did confirm that it's easier than PASCAL in terms of objects being more centered and little scale variation). In my view, the important thing to look at is chance performance. Chance on PASCAL detection is something like 1 in a million. Chance on Imagenet classification is 1 in 200 (easier than Caltech-256!!!). Chance on ImageNet detection is lower but still maybe around 1 in a thousand or so. When chance is so high, the temptation for a classifier to overfit to the bias is in the data is too great. The fact that "t-short" category turned out to be one of the easiest ones for all the classifiers in the competition should give us pause as to whether

Yann LeCun +16

Oct This is not a religious war between deep learning and computer vision. Everyone wins when someone improves a result on some benchmark. No one should feel "defeated", and no one should give up unless they no longer believe in what they are doing. Progress is always exciting, particularly when it comes from a brand new way of doing things, rather than from a carefully tweaked combination of existing methods.

NOTE: Alyosha is a great scientist.

Oct

14,

2012

Geoffrey Hinton +31

16,

predicted that some vision people would say that the task was too easy if a neural net was successful. Luckily I know Jitendra so I asked him in advance whether this task would really count as doing proper object recognition and he said it would, though he also said it would be good to do localization too. To his credit, Andrew Zisserman says our result is impressive.

I think its pretty amazing to claim that a vision task is "just too easy" when we succeed even though some really good vision

> d at it and failed to do nearly as well. I also think scredit a system that gets about 84% correct by ²⁰¹² d get 0.5% correct by chance is a bit desperate.

When he's wrong, he's happy to admit it and he is wrong in interesting ways.

ILSVRC top-5 Error on ImageNet

Effectively every team switches to convolutional neural networks.

Subsequent networks

Effectively every team switches to convolutional neural networks.

Subsequent networks

• VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

x7 conv 64 /2	
pool, /2	
3x3 conv, 64	7
3x3 conv, 64	J
3x3 conv, 64	7
3x3 conv, 64	
3x3 conv, 64)
3x3 conv, 64	~
3x3 conv. 128	y
3x3 conv, 128	~
¥ 3x3 conv, 128	Ì
3x3 conv, 128	
¥ 3x3 conv, 128	J
3x3 conv, 128	7
3x3 conv, 128	J
3 conv, 256, /2	``¥
3x3 conv, 256	
3x3 conv, 256)
3x3 conv, 256	\langle
3x3 conv. 256)
3x3 conv, 256	
¥ 3x3 conv, 256	Ì
3x3 conv, 256	
¥ 3x3 conv, 256	J
3x3 conv, 256	7
3x3 conv, 256	J
3 conv, 512, /2	`` `
3x3 conv, 512	
3x3 conv, 512)
3x3 conv, 512	\langle
¥ 3x3 conv, 512)
avg pool	-
fc 1000	

Effectively every team switches to convolutional neural networks.

Subsequent networks

- VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters
- ResNet (2015): 150 layers, more parameters

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

x7 conv 64 /2	
pool, /2	
3x3 conv, 64	7
3x3 conv, 64	J
3x3 conv, 64	7
3x3 conv, 64	
3x3 conv, 64)
3x3 conv, 64	~
3x3 conv. 128	y
3x3 conv, 128	~
¥ 3x3 conv, 128	Ì
3x3 conv, 128	
¥ 3x3 conv, 128	J
3x3 conv, 128	7
3x3 conv, 128	J
3 conv, 256, /2	``¥
3x3 conv, 256	
3x3 conv, 256)
3x3 conv, 256	\langle
3x3 conv. 256)
3x3 conv, 256	
¥ 3x3 conv, 256	Ì
3x3 conv, 256	
¥ 3x3 conv, 256	J
3x3 conv, 256	7
3x3 conv, 256	J
3 conv, 512, /2	`` `
3x3 conv, 512	
3x3 conv, 512)
3x3 conv, 512	\langle
¥ 3x3 conv, 512)
avg pool	-
fc 1000	

Effectively every team switches to convolutional neural networks.

Subsequent networks

- VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters
- ResNet (2015): 150 layers, more parameters
- Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet, MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs) **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

x7 conv 64 /2	
pool, /2	
3x3 conv, 64	7
3x3 conv, 64	J
3x3 conv, 64	7
3x3 conv, 64	
3x3 conv, 64)
3x3 conv, 64	~
3x3 conv. 128	y
3x3 conv, 128	~
¥ 3x3 conv, 128	Ì
3x3 conv, 128	
¥ 3x3 conv, 128	J
3x3 conv, 128	7
3x3 conv, 128	J
3 conv, 256, /2	``¥
3x3 conv, 256	
3x3 conv, 256)
3x3 conv, 256	\langle
3x3 conv. 256)
3x3 conv, 256	
¥ 3x3 conv, 256	Ì
3x3 conv, 256	
¥ 3x3 conv, 256	J
3x3 conv, 256	7
3x3 conv, 256	J
3 conv, 512, /2	`` `
3x3 conv, 512	
3x3 conv, 512)
3x3 conv, 512	\langle
¥ 3x3 conv, 512)
avg pool	-
fc 1000	

Effectively every team switches to convolutional neural networks.

Subsequent networks

- VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters
- ResNet (2015): 150 layers, more parameters
- Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet, MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.

Training times increase to weeks on dozens of GPUs (\$30k) and decrease by orders of magnitude (\$100 for a ResNet)

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.

x7 conv 64 /2	
pool, /2	
3x3 conv, 64	7
3x3 conv, 64	J
3x3 conv, 64	7
3x3 conv, 64	
3x3 conv, 64)
3x3 conv, 64	~
3x3 conv. 128	y
3x3 conv, 128	~
¥ 3x3 conv, 128	Ì
3x3 conv, 128	
¥ 3x3 conv, 128	J
3x3 conv, 128	7
3x3 conv, 128	J
3 conv, 256, /2	``¥
3x3 conv, 256	
3x3 conv, 256)
3x3 conv, 256	\langle
3x3 conv. 256)
3x3 conv, 256	
¥ 3x3 conv, 256	Ì
3x3 conv, 256	
¥ 3x3 conv, 256	J
3x3 conv, 256	7
3x3 conv, 256	J
3 conv, 512, /2	`` `
3x3 conv, 512	
3x3 conv, 512)
3x3 conv, 512	\langle
¥ 3x3 conv, 512)
avg pool	-
fc 1000	

Impact on Computer Vision

Effectively the entire field switches to convolutional neural networks.

- Object detection
- Image segmentation
- Pose estimation
- 3D reconstruction
- Image inpainting
- Generative models
- etc.

Deep learning revolution in computer vision

Karl Marx

British National Library Verified email at tsn.at Kapitalismuskritiker Marxist Religionskritiker Philosoph

TITLE

Le capital K Marx Librairie du progrès

Capital: volume I K Marx Penguin UK

The communist manifesto K Marx, F Engels Penguin

The german ideology K Marx, F Engels International Publishers Co

Grundrisse: Foundations of the critique of political economy K Marx

Penguin UK

A ideologia alemã: crítica da mais recente filosofia alemã em seus represent B. Bauer e Stirner, e do socialismo alemão em seus diferentes profetas K Marx, F Engels Boitempo editorial

Das kapital

K Marx e-artnow

		M FOLLOW	Cited by
nie Soziologie			Citations h-index i10-index
	CITED BY	YEAR	
	38580	1875	
	19350	* 2004	
	11661	2002	2013 2014 2015 2016
	11652	1970	
	11326	2005	
tantes Feuerbach,	8366	2015	
	7511	2018	

VIEW ALL

Since 2015

142067

134

902

27000

-20250

13500

6750

2018 2019 2020

0

All

381827

213

1431

Karl Marx

British National Library Verified email at tsn.at Kapitalismuskritiker Marxist Religionskritiker Philosoph

TITLE

Le capital K Marx Librairie du progrès

Capital: volume I K Marx Penguin UK

The communist manifesto K Marx, F Engels Penguin

The german ideology K Marx, F Engels International Publishers Co

Grundrisse: Foundations of the critique of political economy K Marx

Penguin UK

A ideologia alemã: crítica da mais recente filosofia alemã em seus representa B. Bauer e Stirner, e do socialismo alemão em seus diferentes profetas K Marx, F Engels Boitempo editorial

Das kapital

K Marx e-artnow

		[M FOLLOW	Cited by				,	VIE
						A	.11	S	Sinc
ie Soz	iologie			Citations h-index i10-index		38182 21 143	7 3 1		1
		CITED BY	YEAR		_				
		38580	1875	П	П	L	H	ŀ	
		19350	* 2004	Н	Н			ŀ	
		11661	2002	2013 2014 2	2015 2016	2017 2	2018 20	019 2	2020
		11652	1970						
		11326	2005						
antes Fo	euerbach,	8366	2015						
		7511	2018						

VIEW ALL

Since 2015

142067

134

902

27000

-20250

13500

6750

0

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Verified email at cs.toronto.edu - <u>Homepage</u>

machine learning psychology artificial intelligence cog

TITLE

Imagenet classification with deep convolutional neural networks

A Krizhevsky, I Sutskever, GE Hinton Communications of the ACM 60 (6), 84-90

Deep learning

Y LeCun, Y Bengio, G Hinton Nature 521 (7553), 436-444

Learning internal representations by error-propagation

DE Rumelhart, GE Hinton, RJ Williams Parallel Distributed Processing: Explorations in the Microstructure of ...

Learning internal representations by error propagation

DE Rumelhart, GE Hinton, RJ Williams Learning internal representations by error propagation

Learning internal representations by error propagation

DE Rumelhart, GE Hinton, RJ Williams MIT Press, Cambridge, MA 1 (318)

Dropout: a simple way to prevent neural networks from overfitting N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov

The journal of machine learning research 15 (1), 1929-1958

Learning representations by back-propagating errors

DE Rumelhart, GE Hinton, RJ Williams Nature 323 (6088), 533-536

		FOLLOWING
, Google		
gnitive science	computer scienc	е
	CITED BY	YEAR
	73778	2017
	32431	2015
	27270	1986
	26966	1986
	26912	1986
	23994	2014
	23115	1986

10k more than Marx!

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Verified email at cs.toronto.edu - Homepage

machine learning psychology artificial intelligence cognitive science computer science

TITLE

Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever, GE Hinton Communications of the ACM 60 (6), 84-90

Deep learning

Y LeCun, Y Bengio, G Hinton Nature 521 (7553), 436-444

CAVEAT: DO NOT MEASURE SCIENCE **BY CITATION COUNT** Learning internal representations by error propagation 26912 1986

DE Rumelhart, GE Hinton, RJ Williams MIT Press, Cambridge, MA 1 (318)

Dropout: a simple way to prevent neural networks from overfitting

N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov The journal of machine learning research 15 (1), 1929-1958

Learning representations by back-propagating errors

DE Rumelhart, GE Hinton, RJ Williams Nature 323 (6088), 533-536

		(a)	George E. Dahl Google Brain	>
23994	2014		Abdelrahman Mohamed Research scientist, Facebook AI	>
23115	1986	1	Vinod Nair Research Scientist, DeepMind	>
			Radford Neal Emeritus Professor, Dept. of Stat…	>

Similar Performance Trends for Many Other Datasets

Object detection (PASCAL VOC)

Similar Performance Trends for Many Other Datasets

Object detection (PASCAL VOC)

Object Detection (MS COCO)

https://paperswithcode.com/sota

Object Detection (MS COCO)

https://paperswithcode.com/sota

Semantic Segmentation (Cityscapes)

Semantic Segmentation (Cityscapes)

Machine Translation (WMT EN-DE)

Question Answering (SQuAD 1.1)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Question Answering (SQuAD 1.1)

Language Modeling (WikiText-103)

Field largely guided by **benchmarks**

Small number of key datasets for each task (image classification, detection, etc.)

Algorithmic / model innovations justified by improvements on benchmarks

Algorithmic innovations usually tested on **multiple datasets**

Little to no mathematical theory

Substantial **progress** on a wide range of benchmarks

Key points

Culture shift

2000 - 2010

- Support vector machines & kernels
- Boosting
- Matrix factorization and tensor methods
- Compressed sensing / high-dim stats
- Convex optimization

Empirical progress usually goes hand in hand with theoretical results

2010 - 2020

- Convolutional neural networks
- Recurrent neural networks
- Transformers (NLP)
- Network architecture improvements
- Zoo of different architectures

Empirical progress usually comes without mathematical theory

Culture shift

2000 - 2010

Empirical progress usually goes hand in hand with theoretical results

Emphasis on provable guarantees

Optimization problems often **convex**

No specialized hardware

2010 - 2020

Empirical progress usually comes without mathematical theory

Emphasis on **benchmarks**

Non-convexity is fine

Large-scale purely experimental work

Still major caveats with benchmarks

Excitement about experimental results, rapid growth in machine learning

One common criticism: overfitting from test set re-use

- But: even results on datasets like ImageNet remained controversial until recently.

1. Collect data

Ideal ML Workflow

4. Compute final test accuracy

4. Compute final test accuracy

Typical ML Workflow

1. Download data (fixed split)

Training set

Test set

Test set

4. Compute final test accuracy

4. Compute final test accuracy

Danger with Test Set Re-Use: Overfitting

Maybe we are just incrementally fitting to more and more random noise.

To be clear: We now know that there is no evidence of overfitting through test set re-use on many contemporary ML benchmarks (e.g., ImageNet)

> However, the community was majorly confused about this.

> > We can learn from this story.

Chapter 1:

[...] we should not use [the test set] for model fitting or model selection, otherwise we will get an unrealistically optimistic estimate of performance of our method. This is one of the "golden rules" of machine learning research.

Textbooks

Slides from a Stanford NLP Class

Training models and pots of data

- The train, tune, dev, and test sets need to be completely distinct
- It is invalid to test on material you have trained on
 - You will get a falsely good performance. We usually overfit on train
- You need an independent tuning set
 - The hyperparameters won't be set right if tune is same as train
- If you keep running on the same evaluation set, you begin to overfit to that evaluation set
 - Effectively you are "training" on the evaluation set ... you are learning things that do and don't work on that particular eval set and using the info
- To get a valid measure of system performance you need another untrained on, independent test set ... hence dev2 and final test

Research Papers, e.g., PASCAL VOC

some "optimistic" reported results, where a number of the best reported. This danger emerges in any evaluation initiative where ground truth is publicly available."

through test set re-use on PASCAL VOC. Alyosha helped with this.)

- "Withholding the annotation of the test data until completion of the challenge played a significant part in preventing over-fitting of the parameters of classification or detection methods. In the VOC2005 challenge, test annotation was released and this led to parameter settings had been run on the test set, and only
- + several more mentions of "danger of overfitting" in the various PASCAL papers.
 - (Note: I searched for a while, there is not a single documented case of overfitting)

Context: a group had just released a new test set for MNIST

Invented CNNs, won a Turing award

Yann LeCun @ylecun

MNIST reborn, restored and expanded. Now with an extra 50,000 training samples.

If you used the original MNIST test set more than a few times, chances are your models overfit the test set Time to test them on those extra samples. arxiv.org/abs/1905.10498

7:03 AM · May 29, 2019 · Facebook

2K Likes 699 Retweets

MNIST: digit classification 60k train, 10k test 10 classes Released in 1998 Oldest widely used dataset Now considered "easy"

https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/

I can't really estimate the numbers, but knowing what we know about multiple testing does anyone really believe the SOTA rush in the mid 2010s was anything but crowdsourced overfitting?

We tested for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht UC Berkeley

Rebecca Roelofs UC Berkeley

generalize to slightly "harder" images than those found in the original test sets.

Ludwig Schmidt UC Berkeley

Vaishaal Shankar UC Berkeley

ostract

nd ImageNet datasets. Both be ade, raising the danger of overf

We tested for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht UC Berkeley

Rebecca Roelofs UC Berkeley

iginal dataset creation processes, we test to what re extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.

Outcome: There is actually no overfitting from test set re-use at all on ImageNet.

Ludwig Schmidt UC Berkeley

Vaishaal Shankar UC Berkeley

ostract

nd ImageNet datasets. Both be ade, raising the danger of overf

We tested for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht UC Berkeley

Rebecca Roelofs UC Berkeley

iginal dataset creation processes, we test to what re extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.

Outcome: There is actually no overfitting from test set re-use at all on ImageNet.

Meta-outcome: A lot of people were really confused about this.

Ludwig Schmidt UC Berkeley

Vaishaal Shankar UC Berkeley

ostract

nd ImageNet datasets. Both be ade, raising the danger of overf

AlexNet Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

About 9 percentage points improvement over previous state-of-the art

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

AlexNet Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

About 9 percentage points improvement over previous state-of-the art

88,000 citations, Turing award, transformation of computer science

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

An analogy to complexity theory

P vs NP is one of the core problems in theoretical computer science - why?

Quick complexity recap

- A lot of important computational problems are in either P or NP.
- **P**: set of problems solvable in polynomial time (Sorting, shortest paths, linear programming, matrix multiplication, etc.)
- NP: set of problems solvable in polynomial time on a non-deterministic Turing machine (Satisfiability, traveling salesman problem, vertex cover, etc.)

NP-Completeness

A key property of many important problems in NP: they are **NP-complete**.

If you can solve a single NP-complete problem in polynomial time, you can solve all problems in NP in polynomial time.

This is formally established via **reductions** between problems.

By now there are **thousands** of NP-complete problems.

All of them have the same computational hardness, up to polynomial factors in the running time.

Big open question (P vs NP): is there a poly-time algorithm for any of these problems?

Complexity theory beyond P vs NP

Complexity theory beyond P vs NP

Complexity theory beyond P vs NP

Complexity theory has built a rich hierarchy of computational problems.

Many advantages, e.g., can quickly put a new computational problem in context.

Similar story in optimization: linear programs, quadratic programs, semi-definite programs, etc.

How does a similar problem hierarchy for data distributions and tasks in machine learning (across vision, NLP, etc.) look?

Not all is well: failures of benchmarks

Different field: recommender systems

On the Difficulty of Evaluating Baselines A Study on Recommender Systems Steffen Rendle^{*} Li Zhang^{*} May 201 srendle@google.com liqzhang@google.com Yehuda Koren[†] yehuda@google.com Abstract 4 Numerical evaluations with comparisons to baselines play a central role when judging research in recommender systems. In this paper, we show [cs.IR] that running baselines properly is difficult. We demonstrate this issue on two extensively studied datasets. First, we show that results for baselines that have been used in numerous publications over the past five years for the Movielens 10M benchmark are suboptimal. With a careful setup of a vanilla matrix factorization baseline, we are not only able to improve upon the reported results for this baseline but even outperform the reported re-sults of any newly proposed method. Secondly, we recap the tremendous effort that was required by the community to obtain high quality results S for simple methods on the Netflix Prize. Our results indicate that empiri-5 \mathbf{c} cal findings in research papers are questionable unless they were obtained on standardized benchmarks where baselines have been tuned extensively — 0 by the research community.

Recommender Systems & Matrix Factorization

Movies

	1		MOXEY BLIE EYES			CC.
2	2			4	5	
0	5		4			1
2			5		2	
		1		5		4
2			4		2	
9	4	5		1		

Users

"State of the Art"

RMSE

year

Actual State of the Art

Progress on Rating Prediction on ML10M (corrected)

Danger with Empirical Evaluations

Difficulty of properly running baselines

Variations in tasks (exact dataset, evaluation metric, etc.)

Incentives around baselines

Standardized, competitive benchmarks address these points

Standard computer vision benchmarks (CIFAR-10, ImageNet, COCO) are

so competitive that missed baselines seem unlikely by now.

What makes a good ML evaluation?
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Michael Roberts ⊡, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-Bibiane Schönlieb

Nature Machine Intelligence 3, 199–217 (2021)Cite this article55k Accesses38 Citations1066 AltmetricMetrics

Abstract

Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher-quality model development and well-documented manuscripts.

Questions

How reliable are performance measurements on ML benchmarks?

What tasks and datasets does ImageNet progress **not** help on?

How well do models with 90% top-1 accuracy on ImageNet really work?

What is the role of ImageNet in this story? What makes a good ML dataset?

- Why does progress on ImageNet lead to progress on many other tasks and datasets?

 - What kind of answers am I looking for?

Why empirical foundations?

People expect more: reliability, fairness, security, etc.

Are the investments in ML going to the right problems?

Not all is well: many papers with failed evaluations, etc.

It leads to better methods!

- It's interesting! Lots of progress over the past years, still not well understood.

Google Scholar

 \equiv

Alec Radford

OpenAl Verified email at openai.com Deep Learning Machine Learning

TITLE

Unsupervised representation learning with deep convolutional generative advernetworks

A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434

Improved techniques for training gans

T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen Advances in neural information processing systems 29, 2234-2242

Proximal policy optimization algorithms

J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov arXiv preprint arXiv:1707.06347

Language Models are Unsupervised Multitask Learners

A Radford, J Wu, R Child, D Luan, D Amodei, I Sutskever Technical report, OpenAi

Improving language understanding by generative pre-training

A Radford, K Narasimhan, T Salimans, I Sutskever

Language models are few-shot learners

TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... arXiv preprint arXiv:2005.14165

Openai baselines

P Dhariwal, C Hesse, O Klimov, A Nichol, M Plappert, A Radford, ...

		Cited by	FOLLOW		
Since 207	All				
338	34065	Citations			
	25	h-index			
	27	110-Index			
110			AR	YE	CITED BY YE
- 8					
Ŭ				2015	10311 2015
- 5	- 11				
				2016	5659 2016
20 2021	2017 2018 2019 20	201			
				2017	5371 2017
		Co-authors			
		- Ihua (2019	4463 2019
entist	ider and Chief Sci	Co-F			
	Chintala	Soun		2018	2938 2018
	k Al Research	Face			
	e tz Brain	Luke Goog		2020	1847 2020
	dfellow				
				2017	710 2017
	n Zaremba	Wojc			

Q

\equiv **Google** Scholar

Kaiming He

Research Scientist, Facebook Al Research (FAIR) Verified email at fb.com - <u>Homepage</u> Computer Vision Machine Learning

TITLE

Deep Residual Learning for Image Recognition

K He, X Zhang, S Ren, J Sun Computer Vision and Pattern Recognition (CVPR), 2016

Faster R-CNN: Towards Real-Time Object Detection with Region Proposed S Ren, K He, R Girshick, J Sun Neural Information Processing Systems (NIPS), 2015

Mask R-CNN

K He, G Gkioxari, P Dollár, R Girshick International Conference on Computer Vision (ICCV), 2017

Delving Deep into Rectifiers: Surpassing Human-Level Performance on Classification

K He, X Zhang, S Ren, J Sun International Conference on Computer Vision (ICCV), 2015

Focal Loss for Dense Object Detection

TY Lin, P Goyal, R Girshick, K He, P Dollár International Conference on Computer Vision (ICCV), 2017

Feature Pyramid Networks for Object Detection

TY Lin, P Dollár, R Girshick, K He, B Hariharan, S Belongie Computer Vision and Pattern Recognition (CVPR), 2017

Learning a Deep Convolutional Network for Image Super-Resolution

C Dong, CC Loy, K He, X Tang European Conference on Computer Vision (ECCV), 2014

	F	OLLOWING	Cited by		
				All	Since 201
			Citations h-index i10-index	238421 58 66	23178 5 6
	CITED BY	YEAR			7000
	91640	2016			-5250 -3500
I Networks	34429 14490	2015 2017	2014 2015 2016 2017	2018 2019 2	2020 2021
nageNet	13284	2015	Public access		VIEW AL
			0 articles		10 article
	9302	2017	not available Based on funding ma	andates	availabl
	8881	2017	Co-authors		VIEW AL
	7813 *	2014	Jian Sun		

Q

\equiv **Google** Scholar

Ross Girshick

Research Scientist, Facebook AI Research (FAIR) Verified email at eecs.berkeley.edu - Homepage computer vision machine learning

CITED BY TITLE Faster R-CNN: Towards real-time object detection with region proposal networks 34254 S Ren, K He, R Girshick, J Sun Advances in neural information processing systems, 91-99 Rich feature hierarchies for accurate object detection and semantic segmentation 21344 R Girshick, J Donahue, T Darrell, J Malik Proceedings of the IEEE conference on computer vision and pattern ... You only look once: Unified, real-time object detection 18571 J Redmon, S Divvala, R Girshick, A Farhadi Proceedings of the IEEE conference on computer vision and pattern ... Microsoft coco: Common objects in context 18536 TY Lin, M Maire, S Belongie, J Hays, P Perona, D Ramanan, P Dollár, ... European conference on computer vision, 740-755 Fast R-CNN 16576 R Girshick Proceedings of the IEEE International Conference on Computer Vision, 1440-1448 Caffe: Convolutional architecture for fast feature embedding 15792 Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick, ... Proceedings of the 22nd ACM international conference on Multimedia, 675-678

Mask R-CNN

K He, G Gkioxari, P Dollár, R Girshick arXiv preprint arXiv:1703.06870

LLOW		Cited by		VIEW ALL
			All	Since 2016
		Citations h-index	209043 73	196196 72
		i10-index	110	107
'EAR				54000
2015				40500
			- 11	27000
2014				-13500
2016		2014 2015 2016	2017 2018 2019 202	20 2021 0
2014	Public access		VIEW ALL	
	0 articles		13 articles	
2015		not available		available
		Based on fundir	ng mandates	
2014				
2017		Co-authors		VIEW ALL
2017		Kaiming Researc	g He ch Scientist. Facebo	ok Al >

🗹 FC

14051

Q

Caveats

This class takes a technical perspective on ML. A narrow technical focus can obscure ethical questions.

A course on empirical foundations of ML is largely new.

But: research on ethical questions in machine learning needs solid foundations, too.

- (It still rests on decades of work in other fields research validity is not new.)
 - We're going to figure some things out as we go through the quarter.

1. Logistics

2. Background & motivation

3. Course outline

Course Outline

Main parts of the class

- 1. Fundamentals: applied stats, causality, a bit of philosophy of science (5 lectures)
- 2. Paper discussions: both "classical" and recent papers (5 lectures)
- 3. Guest speakers (Alec Radford 6, Nicholas Carlini, and more) (3 lectures)
- 4. Student project presentations: initial overview and final presentations (3 lectures)
- 5. Practical tooling for empirical ML (favorite Python packages, etc.) (1 lecture)

Grading & project

Grading: 20% participation in class discussions, 80% research project.

Project

- Theme: broadly around datasets, evaluation, robustness
- Can be research you are already doing
- Team size 1 3
- Proposals due at the beginning of the 4th lecture (October 12)

Next lecture: some inspiration

Questions?

Thanks!