CSE 599 Empirical Foundations
of Machine Learning

University of Washington, Autumn 2021

Normally class starts at 10 am, today 10:05 so people can find the room.



Welcome!



Introduction

Instructor: Ludwig Schmidt

MIT (PhD) — Berkeley (postdoc) — UW (faculty) - started this fall.

Research interests: exactly this class!

TA: Mitchell Wortsman
UW (3rd year PhD student advised by Ali Farhadi)

Research interests: still narrowing it down ...




1. Logistics

2. Background & motivation

3. Course outline



1. Logistics

2. Background & motivation

3. Course outline



Basics

Room: CSE2 G04 (Gates building)

Time: Tuesday / Thursday 10 - 11:20 am

Website: https://mlfoundations.qgithub.io/au21/ (announcements, material, etc.)

Registration: Now available! (see link on website)

Please provide feedback if you see things we can improve or suggestions for topics

Ask questions any time!


https://mlfoundations.github.io/au21/

Communication: Mattermost

Similar to Slack but FERPA-compliant (Family Educational Rights and Privacy Act)

Should be accessible by anyone at UW
(may require a request if not CSE)

Please log in if you have not already
done so! (It’s easy)

Feel free to ask any questions related to
the course, post papers, etc.

@ 0 ®



(Remote) Attendance

In-person attendance Is strongly encouraged.
— Experience will be better, especially for discussions.

We have a Zoom link for a few people who cannot
join in person, but the link is secret :-)

If you cannot join for a specific session, message

Mitchell and me the day before and we will send you the link.
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Explosive Growth in ML
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How Google is Remaking Itself as a “Machine Learning First” Company

If you want to build artificial intelligence into every product, you better retrain your army of coders. Check.

HEE B
HDN GDUGLE Is HEI IHP Growing Use of Deep Learning at Google

Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
.. many others ...
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The University of Washington is among the recipients of a five-year, $100 million investment announced today

by the National Science Foundation (NSF) aimed at driving major advances in artificial intelligence research and
! education. The NSF Al Institute for Foundations of Machine Learning (IFML) — one of five new NSF Al Institutes
= MIGIEDB] csceomme susmess corore sear moews serence  securrry around the country — will tap into the expertise of faculty in the Allen School's Machine Learning group and the

| UW Department of Statistics in collaboration with the University of Texas at Austin, Wichita State University,

Microsoft Research, and multiple industry and government partners. The new institute, which will be led by UT
Austin, will address a set of fundamental problems in machine learning research to overcome current limitations

of the field for the benefit of science and society.

h u IT “This institute tackles the foundational challenges that need to be solved to keep Al on its current trajectory and

maximize its impact on science and technology,” said Allen School professor and lead co-principal investigator

kb Sewoong Oh in a UW News release. “We plan to develop a toolkit of advanced algorithms for deep learning,
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Senator Charles Schumer (D—-NY) unveiled his artificial intelligence plan last week at a meeting of the National
Security Commission on Artificial Intelligence. ALEX WONG/GETTY IMAGES

(
United States should make a massive investment in Al, (
top Senate Democrat says (

By Jeffrey Mervis | Nov. 11,2019, 11:45 AM

The top Democrat in the U.S. Senate wants the government to create a new agency that would
invest an additional $100 billion over 5 years on basic research in artificial intelligence (Al).
Senator Charles Schumer (D—NY) says the initiative would enable the United States to keep pace
with China and Russia in a critical research arena and plug gaps in what U.S. companies are
unwilling to finance.
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What are the key advancements”

Progress in multiple areas of machine learning with similar approach: deep learning

e Computer vision
* Automatic speech recognition
* Natural language processing

 Game playing (Go, Atari, Starcraft, DotA)

Focus today: computer vision

13
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ImageNet

Large image classification dataset: 1.2 mio training images, 1,000 image classes.

olden retriever

GGreat white shark

Minibus
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ImageNet

Progress over the past decade:

ILSVRC top-5 Error on ImageNet
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ImageNet

Progress over the past decade:

ILSVRC top-5 Error o “[t j[S mYy opinion that the following
paper is the most impactful paper in

facebook Artificial Intelligence
machine learning and computer vision

GOOQ|€ AI in the last five years.”

Jitendra Malik, CACM June 2017
Microsoft Research Al

2010 2011 2012 2013 2014 Human 2015 2016 2017

ImageNet competition year
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ImageNet

t decade:

Figure 7-1. Error Rate of Image Classification by Artificial

Intelligence and Humans, 2010-17 that the fO”OWing

Error rate (percent)
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Sources: Russakovsky et al. (2015); CEA calculations.

10



ImageNet Ristory

Key person: Fei-Feli Li

Assistant prof at Princeton starting 2007




ImageNet Ristory

Key person: Fei-Feli Li
Assistant prof at Princeton starting 2007

Princeton Is also home to the WordNet project

Hierarchical database of words in English and other languages

dog, domestic dog, Canis familiaris

— canine, canid
— carnivore

— placental, placental mammal, eutherian, eutherian mammal

— mammal
| -vertebrate, craniate
— chordate
= animal, animate being, beast, brute, creature, fauna



ImageNet Ristory

Fei-Feri’s vision (2006 — 2007):
 Humans know thousands of visual categories (heuroscience).

e |f we want human-like computer vision, we need correspondingly large datasets.
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ImageNet Ristory

Fei-Feri’s vision (2006 — 2007):

 Humans know thousands of visual categories (heuroscience).

e |f we want human-like computer vision, we need correspondingly large datasets.

» Let’s populate all of WordNet with around 1,000 images per node!

» About 50 million images for about 50,000 classes (nouns in WordNet)

(Planned) ImageNet is 1000x larger!
Context: PASCAL VOC

 Most active object detection / classification dataset from 2005 - 2012
* Largest version (2012): 12,000 images total for 20 classes



Building ImageNet

Main student: Jia Deng (how back at Princeton as faculty)

Where do you get 50 million images?

How do you label them?

[Deng, Dong, Socher, Li, Li, Fei-Fer’'09]
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Building ImageNet

Main student: Jia Deng (how back at Princeton as faculty)

Where do you get 50 million images?

» Internet! (increasing amount of consumer photos)

flickr

amazon

How do you label them?

» Internet! (Crowdsourcing platforms)

+ lots of clever task design

+ lots of hard work [Deng, Dong, Socher, Li, Li, Fei-Fei’09]
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ImageNet Competition

ImageNet was about 10% done (already 5 million images!)

Alex Berg (prof at UNC and research scientist at FAIR)

» Let’s make it a competition!




ImageNet Competition

ImageNet was about 10% done (already 5 million images!)

Alex Berg (prof at UNC and research scientist at FAIR)
» Let’'s make it a competition!

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Olga Russakovsky (student then postdoc at Stanford)

“Small” version of ImageNet: 1,000 classes, 1.2 million images

» “ImageNet” has become equivalent to ILSVRC 2012




IMJAGENE T Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)
Held as a "taster competition" in conjunction with PASCAL Visual Object Classes Challenge 2010 (VOC2010)

Registration Download Introduction Data Task Development kit Timetable Features Submission Citation"®V Organizers
Contact

News

o September 2, 2014: A new paper which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset,
analyzes the results of the past five years of the challenge, and even compares current computer accuracy with human accuracy is
now available. Please cite it when reporting ILSVRC2010 results or using the dataset.

» For latest challenge, please visit here.

» September 16, 2010: Slides for overview of results are available, along with slides from the two winning teams:

Winner: NEC-UIUC

Yuanging Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu (NEC). LiangLiang Cao, Zhen Li, Min-Hsuan Tsai, Xi
Zhou, Thomas Huang (UIUC). Tong Zhang (Rutgers).

[PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

Honorable mention: XRCE
Jorge Sanchez, Florent Perronnin, Thomas Mensink (XRCE)
[PDF] NB: This is unpublished work. Please contact the authors if you plan to make use of any of the ideas presented.

 September 3, 2010: Full results are available. Please join us at the VOC workshop at ECCV 2010 on 9/11/2010 at Crete, Greece. At
the workshop we will provide an overview of the results and invite winning teams to present their methods. We look forward to
seeing you there.

e August 9, 2010: Submission deadline is extended to 4:59pm PDT, August 30, 2010. There will be no further extensions.

e August 8, 2010: Submission site is up.

* June 16, 2010: Test data is available for download!.

 May 3, 2010: Training data, validation data and development kit are available for download!.

 May 3, 2010: Registration is up!. Please register to stay updated.

 Mar 18, 2010: We are preparing to run the ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)




ImageNet Classification Task

Training data: 1.2 million images for 1,000 classes (roughly class-balanced)
Validation set: 50,000 images for 1,000 classes (exactly class-balanced)

Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)
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Evaluation metric: Top-5 accuracy

Five predictions per image
*Prediction counts as correct if the image label is among the five predictions



ImageNet Classification Task

Training data: 1.2 million images for 1,000 classes (roughly class-balanced)
Validation set: 50,000 images for 1,000 classes (exactly class-balanced)
Test set: 150,000 images for 1,000 classes (exactly class-balanced, hidden labels)

Evaluation metric: Top-5 accuracy

Five predictions per image
*Prediction counts as correct if the image label is among the five predictions

Why? Sometimes multiple labels per image, sometimes unclear class boundaries.
+ task Is already hard enough
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AlexNet

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.




AlexNet

Large convolutional neural network (CNN)

Basic idea like In the late 80s, many “tricks” to get it to work on ImageNet
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Basic building block:
Structured, learnable linear layer followed by a simple element-wise non-linearity

Repeat the building block several times, add a classification loss at the end.



ReLU (rectified linear unit) non-linearity
Local response normalization

Training on GPUs

Overlapping pooling

Dropout

Data augmentation

sigmoid

AlexNet Ingredients
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Why these? Each change lead to 0 - 2 percentage points of accuracy improvement.



AlexNet Background

Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”
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AlexNet Background

Alex’ Masters thesis: “Learning Multiple Layers of Features from Tiny Images”

Built a smaller image classification dataset CIFAR-10
50,000 images

10 classes

e 32Xx32 pixels

 Subset of a large dataset Tinylmages (80 million images)

Alex worked on fast neural network implementations for CIFAR-10.

» Good results, so they decided to scale up the approach

» Alex tuned the model for one year on ImageNet



AlexNet Results

Model Top-1 Top-5 Model Top-1 (val) | Top-5S (val) | Top-3S (test)
. SIFT + FVs [7] - — 26.2%
Sparse coding [2] | 47.1% | 28.2% 1 CNN 40.7% 182% —
SIFT + FVs [24] | 45.7% | 25.7% 5 CNNs 38.1% 16.4% 16.4%
CNN 37.5% | 17.0% 1 CNN* 39.0% 16.6% _
7 CNNs* 36.7% 15.4% 15.3%
Table 1: Comp arison. of.results on ILSVRC- Table 2: Comparison of error rates on ILSVRC-2012 validation and
2010 test set. In italics are best results test sets. In italics are best results achieved by others. Models with an
achieved by others. asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall

release. See Section 6 for details.

» About 9 percentage points improvement over previous state-of-the art



Immediate Controversy in 2012

” Yann LeCun » Public Oct 13,2012

+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of
a splash. The room was overflowing with people standing and sitting on the
floor. There was a lively series of comments afterwards, with +Alyosha Efros,
Jitendra Malik, and | doing much of the talking.
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+Alex Krizhevsky's talk at the ImageNet ECCV workshop yesterday made a bit of
a splash. The room was overflowing with people standing and sitting on the
floor. There was a lively series of comments afterwards, with +Alyosha Efros,
Jitendra Malik, and | doing much of the talking.

Svetlana Lazebnik +1 Oct
Too bad | couldn't be there! Any take-away points for those of us 13,

2012
who couldn't attend? +Alyosha Efros, I'd love to get your take as

well!
Yann LeCun Oct
+Svetlana Lazebnik: Our friend +Alyosha Efros said that 2:)?'2

ImageNet is the wrong task, wrong dataset, wrong everything.
You know him ;-)
Still, he likes the idea of feature learning.




Alyosha Efros +11
Something like that... :) 1do like feature learning, the less

supervised — the better. So, | am excited that people are working
in this direction, but | am not ready to declare success until they
can show improvement on PASCAL detection. Basically, | think
ImageNet is just too easy (+Yann LeCun did confirm that it's
easier than PASCAL in terms of objects being more centered and
little scale variation). In my view, the important thing to look at is
chance performance. Chance on PASCAL detection is
something like 1 in a million. Chance on Imagenet classification
is 1in 200 (easier than Caltech-256!!l). Chance on ImageNet
detection is lower but still maybe around 1 in a thousand or so.
When chance is so high, the temptation for a classifier to overfit
to the bias is in the data is too great. The fact that "t-short"
category turned out to be one of the easiest ones for all the
classifiers in the competition should give us pause as to whether
the task is indeed modeling the complexity of our visual world.
What was agreed upon is that, even if deep learning can't be
applied to PASCAL detection directly (although I still don't see
why not), it should still be possible to use the features learned
from ImageNet and then use them on PASCAL instead of HOG. |
do think it will give some sort of a boost, but | suspect it won't be

a huge one.

Oct
14,
2012
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Geoffrey Hinton +31 Oct
| predicted that some vision people would say that the task was 210?'2

too easy if a neural net was successful. Luckily | know Jitendra
so | asked him in advance whether this task would really count
as doing proper object recognition and he said it would, though
he also said it would be good to do localization too. To his
credit, Andrew Zisserman says our result is impressive.

| think its pretty amazing to claim that a vision task is "just too
easy" when we succeed even though some really good vision
people tried hard at it and failed to do nearly as well. | also think
that trying to discredit a system that gets about 84% correct by
saying you could get 0.5% correct by chance is a bit desperate.

—
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Yann LeCun +16
This is not a religious war between deep learning and computer

vision. Everyone wins when someone improves a result on some
benchmark. No one should feel "defeated", and no one should
give up unless they no longer believe in what they are doing.
Progress is always exciting, particularly when it comes from a
brand new way of doing things, rather than from a carefully
tweaked combination of existing methods.
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NOTE: Alyosha is a great scientist.
When he’s wrong, he’s happy to admit it and he is wrong in interesting ways.
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Large improvement, new method » Tremendous interest from the community
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« VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Impact on ImageNet

Effectively every team switches to convolutional neural networks.

Subsequent networks
« VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters

» ResNet (2015): 150 layers, more parameters
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Impact on ImageNet

Effectively every team switches to convolutional neural networks.

Subsequent networks
« VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters

» ResNet (2015): 150 layers, more parameters

e Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet,
MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Impact on ImageNet

Effectively every team switches to convolutional neural networks.

Subsequent networks
« VGG (2014): up to 19 layers (AlexNet: 8 layers), more parameters

» ResNet (2015): 150 layers, more parameters

e Wide ResNets, ResNeXT, SE-ResNet, EfficientNet, AmoebaNet,
MobileNet, Inception, NASNet, DenseNet, SqueezeNet, etc.

Training times increase to weeks on dozens of GPUs ($30K) ...

... and decrease by orders of magnitude ($100 for a ResNet
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VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Impact on Computer Vision

Effectively the entire field switches to convolutional neural networks.

Object detection
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» Deep learning revolution in computer vision
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N Srivastava, G Hinton, A Krizhevsky, | Sutskever, R Salakhutdinov Research scientist, Facebook Al ...
The journal of machine learning research 15 (1), 1929-1958
Vinod Nair >

Learning representations by back-propagating errors 23115 1986 Research Sclentist, Desphiing

DE Rumelhart, GE Hinton, RJ Williams

Nature 323 (6088), 533-536 Radford Neal 5

Emeritus Professor, Dept. of Stat...

Dropout: a simple way to prevent neural networks from overfitting 23994 2014 0 Abdelrahman Mohamed >




Similar Performance Trends for Many Other Datasets
Object detection (PASCAL VOC
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Similar Performance Trends for Many Other Datasets
Object detection (PASCAL VOC)

100 =

EfficientNet-L2+NAS-FPN (single scale test, with self-training)

90 DeeplLabv3-JFT
Multipath-RefineNet

CentraleSupelec Deep G=CRF

80
D SID
O ParseNet
Z 70
h
S FCN (VGG-16)

60

SDS
50
40
Jul'14 Jan'15 Jul'15 Jan'16 Jul'le Jan'1l7 Jul'l7 Jan'18 Jul'l8 Jan'19 Jul '19 Jan '20 Jul '20

Other models Models with highest Mean loU



Object Detection (MS COCO)

https://paperswithcode.com/sota




Object Detection (MS COCO

BOX AP

60
EfﬁcientDet-D7x (single-scale)
AC-FPN Cascade R-CNN (X-152-32x8d-FPN=IN5k; multi scale, only CEM)
50
D-RFCN + SNIP (DPN-98 with flip, multi-scale)

Mask R-CNN (ResNeXt-101-FPN)

40 - B G
Fqster R-CNN (box refinement, context, ,m__u!t_i,-scale'te‘sting)
30 S§D512
20
10
Jan'16 Jul'l6 Jan'1l7 Jul'17 Jan'18 Jul'18 Jan'19 Jul '19 Jan '20 Jul '20

Other models

https://paperswithcode.com/sota

-0~ Models with highest box AP



Semantic Segmentation (Cityscapes)




MEAN IOU (CLASS)
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Context

DeeplLab

Jan'1l5

Jul'1l5

Jan'16

PSPNet (ResNet-101)
ResNet-38

RefineNet (ResNet-101)

LRR-4x

Jul'1l6

Jan'l7/

Other models

Mapillary SSMA

Jul'l7 Jan '18 Jul'l8

Models with highest Mean loU (class)

Jan '19

Semantic Segmentation (Cityscapes)

HRNetV2 + OCR +

Jul'19

Jan '20



BLEU SCORE
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30

20

10

Machine Translation (WMT EN-DE

RNN Enc-Dec.Att

Jan'16

Jul'16

GNMT+RL

Jan'l/

Noisy back-translation

Weighted Transformer (large)

ConvS2S (ensemble)

Jul'l7

Other models

Jan '18 Jul'18

Models with highest BLEU score

Jan'19

Jul '19

Jan '20

Jul '20



Question Answering (SQuUAD 1.1

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers".

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud




F1

Question Answering (SQuUAD 1.1

100 E
XLNet (single model) LU~
BERT (ensemble)
90 Reinforced Mnemonic Reader (ensemble model) MARS {ensemble)
ReasoNet (ensemble)

80  Match-LSTM with Ans-Ptr (Boundary) (ensemble)

/70

60

50

Jan'1l7 Jul'l7 Jan'18 Jul'18 Jan '19 Jul'19 Jan '20 Jul '20

Other models Models with highest F1



TEST PERPLEXITY
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Language Modeling (WikiText-103

Neural cache model (size = 2,000)

GENN-14

Jan'l/

May '1/

Sep '17

4 layer QRNN

LSTM (Hebbian, Cache, MbPA) Trellis Network

Jan '18

May '18

Other models

Transformer (Adaptive inputs)

Sep '18 Jan '19 May '19

Models with lowest Test perplexity

Megatron-LM

Sep '19

Jan '20

May '20

Sep '20



Key points

Field largely guided by benchmarks
Small number of key datasets for each task (image classification, detection, etc.)

Algorithmic / model innovations justified by improvements on benchmarks

Algorithmic innovations usually tested on multiple datasets

Little to no mathematical theory

Substantial progress on a wide range of benchmarks



Culture shift

2000 - 2010 2010 - 2020
e Support vector machines & kernels * Convolutional neural networks
* Boosting * Recurrent neural networks
 Matrix factorization and tensor * Transformers (NLP)
methods

 Network architecture improvements

* Compressed sensing / high-dim stats » Zoo of different architectures

* Convex optimization

Empirical progress usually goes Empirical progress usually comes
hand in hand with theoretical results without mathematical theory



Culture shift

2000 - 2010 2010 - 2020
Empirical progress usually goes Empirical progress usually comes
hand in hand with theoretical results without mathematical theory
Emphasis on provable guarantees Emphasis on benchmarks
Optimization problems often convex Non-convexity is fine

No specialized hardware Large-scale purely experimental work



Still major caveats with benchmarks

Excitement about experimental results, rapid growth in machine learning

But: even results on datasets like ImageNet remained controversial until recently.

One common criticism: overfitting from test set re-use
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1. Collect data

2. Split data

Training set
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2. Split data
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3. Train and
tune model
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Typ

1. Download data
(fixed split)

Training set

cal ML Workflow

67



1. Download data
(fixed split)

Training set

3. Train and tune model
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Danger with Test Set Re-Use: Overfitting

Maybe we are just incrementally fitting to more and more random noise.

Overfitting sketch
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True accuracy on fresh data (%)

Overfitting from
test set re-use

Classifier results
over time

85 90 95

Test set accuracy (%)

100

63



To be clear: We now know that there is no evidence of
overfitting through test set re-use on many
contemporary ML benchmarks (e.g., ImageNet)

However, the community was majorly
confused about this.

We can learn from this story.



Textbooks

Chapter 1:

[...] we should not use [the test set| for model fitting or
model selection, otherwise we will get an unrealistically

optimistic estimate of performance of our method. This is
one of the “golden rules” of machine learning research.

Machine Learning

A Probabllistic Perspective

Kevin P. Murphy



Slides from a Stanford NLP Class

Training models and pots of data

e The train, tune, dev, and test sets need to be completely distinct
e |tisinvalid to test on material you have trained on

* You will get a falsely good performance. We usually overfit on train
* You need an independent tuning set

* The hyperparameters won’t be set right if tune is same as train

e |If you keep running on the same evaluation set, you begin to
overfit to that evaluation set

* Effectively you are “training” on the evaluation set ... you are learning
things that do and don’t work on that particular eval set and using the info

e To get a valid measure of system performance you need another
untrained on, independent test set ... hence dev2 and final test



Research Papers, e.qg., PASCAL VOC

“Withholding the annotation of the test data until completion of
the challenge played a significant part in preventing over-fitting
of the parameters of classification or detection methods. In the
VOCZ2005 challenge, test annotation was released and this led to
some “optimistic” reported results, where a number of
parameter settings had been run on the test set, and only
the best reported. This danger emerges in any evaluation
Initiative where ground truth is publicly available.”

+ several more mentions of “danger of overfitting” in the various PASCAL papers.

(Note: | searched for a while, there is not a single documented case of overfitting
through test set re-use on PASCAL VOC. Alyosha helped with this.)



Context: a group had just released a new test set for MNIST
Invented CNNs, won a Turing award

Yann LeCun Vv
/ @ylecun

MNIST reborn, restored and expanded.
Now with an extra 50,000 training samples. MNIST: digit classification

If you used the original MNIST test set more than a few 60K train, 10k test

times,|chances are your models overfit the test set

Time to test them on those extra samples.
arxiv.org/abs/1905.10498 Released in 1998

/7:03 AM - May 29, 2019 - Facebook

10 classes

Oldest widely used dataset

699 Retweets 2K Likes .
Now considered “easy”



https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/

Al competitions don’t produce
useful models

ImageNet Classification Error (Top 5)

30,0

20 T .
Reliable improvement

20,0

15,0
Probably overfitting

Questionable
10,0
) l ﬁ
0,0 - . ‘

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GoogleNet-v4)

[ can’t really estimate the numbers, but knowing what we know about multiple testing
does anyone really believe the SOTA rush in the mid 2010s was anything but
crowdsourced overfitting?



We tested for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?”

Benjamin Recht Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

)stract

nd ImageNet datasets. Both bejz
) ade, raising the danger of overfiii

"8+ / B iginal dataset creation processes, we test to what
extent current class1ﬁcat10n models generahze to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.
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accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.

Outcome: There is actually no overfitting from test set re-use at all on ImageNet.



We tested for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?”

Benjamin Recht Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

)stract

nd ImageNet datasets. Both be =
&)  ade, raising the danger of overf

"%/ B iginal dataset creation processes, we test to what
extent current classification models generahze to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.

Outcome: There is actually no overfitting from test set re-use at all on ImageNet.

Meta-outcome: A lot of people were really confused about this.



AlexNet Results

Model Top-1 Top-5 Model Top-1 (val) | Top-5S (val) | Top-3S (test)
. SIFT + FVs [7] - — 26.2%
Sparse coding [2] | 47.1% | 28.2% 1 CNN 40.7% 182% —
SIFT + FVs [24] | 45.7% | 25.7% 5 CNNs 38.1% 16.4% 16.4%
CNN 37.5% | 17.0% 1 CNN* 39.0% 16.6% _
7 CNNs* 36.7% 15.4% 15.3%
Table 1: Comp arison. of.results on ILSVRC- Table 2: Comparison of error rates on ILSVRC-2012 validation and
2010 test set. In italics are best results test sets. In italics are best results achieved by others. Models with an
achieved by others. asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall

release. See Section 6 for details.

» About 9 percentage points improvement over previous state-of-the art



AlexNet Results

Model Top-1 Top-5 Model Top-1 (val) | Top-S (val) | Top-35 (test)
. SIFT + FVs [7] - — 26.2%
Sparse coding [2] | 47.1% | 28.2% 1 CNN 40.7% 182% —
SIFT + FVs [24] | 45.7% | 25.7% 5 CNNs 38.1% 16.4% 16.4%
CNN 37.5% | 17.0% 1 CNN* 39.0% 16.6% _
7 CNNs* 36.7% 15.4% 15.3%
Table 1: Comp arison. of.results on ILSVRC- Table 2: Comparison of error rates on ILSVRC-2012 validation and
2010 test set. In italics are best results test sets. In italics are best results achieved by others. Models with an
achieved by others. asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall

release. See Section 6 for details.

» About 9 percentage points improvement over previous state-of-the art

» 88,000 citations, Turing award, transformation of computer science

?2??




An analogy to complexity theory

P vs NP is one of the core problems in theoretical computer science - why?

Quick complexity recap
A lot of important computational problems are in either P or NP.

P: set of problems solvable in polynomial time
(Sorting, shortest paths, linear programming, matrix multiplication, etc.)

NP: set of problems solvable in polynomial time on a non-deterministic Turing machine
(Satisfiability, traveling salesman problem, vertex cover, etc.)



NP-Completeness

A key property of many important problems in NP: they are NP-complete.

If you can solve a single NP-complete [ circuit-saT )
problem in polynomial time, you can solve

. . . . SAT
all problems in NP in polynomial time. ( )

This is formally established via reductions between problems.

[Clique Problem) [Subset Problem)

By now there are thousands of NP-complete problems. (Vertex Cover Problem)

* All of them have the same computational hardness, [Hamiltonian Cycle)
up to polynomial factors in the running time. (Trave,“ng S )

Big open question (P vs NP): is there a poly-time algorithm for any of these problems?



Complexity theory beyond P vs NP




Complexity theory beyond P vs NP
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Complexity theory beyond P vs NP
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Not all is well: fallures of benchmarks

Different field: recommender systems

On the Difficulty of Evaluating Baselines

A Study on Recommender Systems

Steften Rendle* Li Zhang*
srendle@google.com ligzhang@google.com
Yehuda Koren'

yehuda@google.com

Abstract

Numerical evaluations with comparisons to baselines play a central role
when judging research in recommender systems. In this paper, we show
that running baselines properly is difficult. We demonstrate this issue on
two extensively studied datasets. First, we show that results for baselines
that have been used in numerous publications over the past five years for
the Movielens 10M benchmark are suboptimal. With a careful setup of a
vanilla matrix factorization baseline, we are not only able to improve upon
the reported results for this baseline but even outperform the reported re-
sults of any newly proposed method. Secondly, we recap the tremendous
effort that was required by the community to obtain high quality results
for simple methods on the Netflix Prize. Our results indicate that empiri-
cal findings in research papers are questionable unless they were obtained
on standardized benchmarks where baselines have been tuned extensively
by the research community.

01395v1l [cs.IR]| 4 May 2019




Recommender Systems & Matrix Factorization
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“State of the Art”

Progress on Rating Prediction on ML10M (reported)
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Actual State of the Art

Progress on Rating Prediction on ML10M (corrected)
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Danger with Empirical Evaluations

Difficulty of properly running baselines
Variations in tasks (exact dataset, evaluation metric, etc.)
Incentives around baselines

» Standardized, competitive benchmarks address these points

Standard computer vision benchmarks (CIFAR-10, ImageNet, COCO) are
SO competitive that missed baselines seem unlikely by now.

What makes a good ML evaluation?



Common pitfalls and recommendations for using
machine learning to detect and prognosticate for
COVID-19 using chest radiographs and CT scans

Michael Roberts 7, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung,
Angelica |. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall,
Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-

Bibiane Schonlieb

Nature Machine Intelligence 3,199-217 (2021) | Cite this article
65k Accesses | 38 Citations | 1066 Altmetric | Metrics

Abstract

Machine learning methods offer great promise for fast and accurate detection and
prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest
radiographs (CXR) and chest computed tomography (CT) images. Many articles have
been published in 2020 describing new machine learning-based models for both of these
tasks, butitis unclear which are of potential clinical utility. In this systematic review, we
consider all published papers and preprints, for the period from1January 2020to 3
October 2020, which describe new machine learning models for the diagnosis or
prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv,
medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are
considered. Our search identified 2,212 studies, of which 415 were included after initial

screening and, after quality screening, 62 studies were included in this systematic review.

Our review finds that none of the models identified are of potential clinical use due to

methodological flaws and/or underlying biases. This is a major weakness, given the

urgency with which validated COVID-19 models are needed. To address this, we give many
recommendations which, if followed, will solve these issues and lead to higher-quality
model development and well-documented manuscripts.



Questions

How reliable are performance measurements on ML benchmarks??
Why does progress on ImageNet lead to progress on many other tasks and datasets”?

What tasks and datasets does ImageNet progress not help on?
How well do models with 90% top-1 accuracy on ImageNet really work?

What is the role of ImageNet in this story? What makes a good ML dataset?

* What kind of answers am | looking for?



Why empirical foundations?

It’s interesting! Lots of progress over the past years, still not well understood.

People expect more: reliability, fairness, security, etc.
Are the investments in ML going to the right problems?
Not all is well: many papers with failed evaluations, etc.

It leads to better methods!
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| Deep Learning Machine Learning Citations 34065 33801
i , h-index 25 25
" i10-index 27 27
1ML = CITED BY YEAR 11000
Unsupervised representation learning with deep convolutional generative adversarial 10311 2015 g
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A Radford, L Metz, S Chintala 5500
arXiv preprint arXiv:1511.06434
: - 2750
Improved techniques for training gans 5659 2016
T Salimans, | Goodfellow, W Zaremba, V Cheung, A Radford, X Chen - .
Advances in neural information processing systems 29, 2234-2242 2016 2017 2018 2019 2020 2021 0
Proximal policy optimization algorithms 5371 2017
J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov
arXiv preprint arXiv:1707.06347 Co-authors
: : %
Language Models are Unsupervised Multitask Learners 4463 2019
A Radford, J Wu, R Child, D Luan, D Amodei, | Sutskever llya Sutskever 5
Technical report, OpenAi ﬁ Co-Founder and Chief Scientist ...
Improving language understanding by generative pre-training 2938 2018 ,@3 Soumith Chintala 5
A Radford, K Narasimhan, T Salimans, | Sutskever | Facebook Al Research
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Kaiming He FOLLOWING Cited by
Research Scientist, Facebook Al Research (FAIR) All Since 2016
Verified email at fb.com - Homepage
Computer Vision Machine Learning Citations 238421 231788
h-index 58 57
i10-index 66 66
TITLE CITED BY YEAR 70000
Deep Residual Learning for Image Recognition 91640 2016 L
K He, X Zhang, S Ren, J Sun
Computer Vision and Pattern Recognition (CVPR), 2016 35000
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 34429 2015 17500
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Neural Information Processing Systems (NIPS), 2015 B I
2014 2015 2016 2017 2018 2019 2020 2021 0
Mask R-CNN 14490 2017
K He, G Gkioxari, P Dollar, R Girshick
International Conference on Computer Vision (ICCV), 2017
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet 13284 2015 Public access e
Classification . .
K He, X Zhang, S Ren, J Sun 0 articles 10 articles
International Conference on Computer Vision (ICCV), 2015
not available available
Focal Loss for Dense Object Detection 9302 2017 :
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International Conference on Computer Vision (ICCV), 2017
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Caveats

This class takes a technical perspective on ML.

A narrow technical focus can obscure ethical questions.

But: research on ethical questions in machine learning needs solid foundations, too.

A course on empirical foundations of ML is largely new.

(It still rests on decades of work in other fields - research validity is not new.)

» We’re going to figure some things out as we go through the quarter.



1. Logistics

2. Background & motivation

3. Course outline



Course Outline

Main parts of the class

1. Fundamentals: applied stats, causality, a bit of philosophy of science (5 lectures)
2. Paper discussions: both “classical” and recent papers (5 lectures)

3. Guest speakers (Alec Radford « , Nicholas Carlini, and more) (3 lectures)

4. Student project presentations: initial overview and final presentations (3 lectures)

5. Practical tooling for empirical ML (favorite Python packages, etc.) (1 lecture)



Grading & project
Grading: 20% participation in class discussions, 80% research project.

Project

Theme: broadly around datasets, evaluation, robustness

Can be research you are already doing

Teamsize 1 -3

Proposals due at the beginning of the 4th lecture (October 12)

Next lecture: some inspiration



Thanks!

Questions?



