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Goals for today

Give examples of research on the “other” (hon-model) half of machine learning

Inspiration for course projects

Course project timeline, expectations, etc.
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Large improvement, new methods » Tremendous impact on machine learning
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Contrast to classical algorithms

Classical algorithms Empirical machine learning
Precisely defined general problems Problems defined by specific datasets
(e.g., shortest path on directed graphs) (e.g., ImageNet, SQUAD, etc.)

Algorithm is provably correct Accuracy measured on a test set

Algorithm compared on specific

Algorithm compared in terms of time
benchmark results

complexity, space complexity, etc.

» Validity of empirical results is crucial

» Need conceptual frameworks to organize datasets & benchmarks

(Note: learning theory offers provable guarantees, but not for specific algorithms such
as the latest network architecture, or for specific datasets.)
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3. Do benchmark results transfer across test distributions”? (External validity)

4. Course projects



What are we Measuring with a Benchmark?

ILSVRC top-5 Error on ImageNet
30

25
AlexNet
20 ‘
15
10
| - - -
O B e
2010 2011 2012 2013 2014 Human 2015 2016 2017

There Is nothing special about the 100k images in the ImageNet test set.
» What do we really care about?
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(Generalization

At least, the classifiers should perform similarly well on new data from the same source.

83%

Data source

82 - 84%
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Generalization, more formally



How can we reliably measure generalization??



ldeal ML workflow: holdout method
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Typical ML workflow: hold-out re-use
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Replication Crisis in the Sciences
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Over half of psychology studies fail reproducibility
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Largest replication study to date casts doubt on many published positive resulits.
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Real Cause for Concern

ILSVRC top-5 Error on ImageNet
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AII the same test set!
Also true for CIFAR-10: fixed, public train / test split since 2008.

» Numbers looked good, but there was substantial uncertainty around them.



Machine Learning

A Probabilistic Perspective

[...] we should not use [the test set] for model fitting or
model selection, otherwise we will get an unrealistically

optimistic estimate of performance of our method. This is
one of the “golden rules” of machine learning research.
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Machifl BEarning one of the “golden rules” of machine learning research.

A Probabillistic Perspective

Kevin P. Murphy

Int J Comput Vis (2010) 88: 303-338
DOI 10.1007/s11263-009-0275-4

The PASCAL Visual Object Classes (VOC) Challenge [ . _] new test da ta [S Iq eq U I Iq ed eacC h year
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fitting on the test set.

Received: 30 July 2008 / Accepted: 16 July 2009 / Published online: 9 September 2009
© Springer Science+Business Media, LLC 2009

Abstract The PASCAL Visual Object Classes (VOC) chal- 1 Introduction

lenge is a benchmark in visual object category recognition

and detection, providing the vision and machine learning  The PASCAL' Visual Object Classes (VOC) Challenge con-
communities with a standard dataset of images and anno-  sists of two components: (i) a publicly available dataset

tation, and standard evaluation procedures. Organised annu-  of images and annotation, together with standardised eval-
- —
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MNIST reborn, restored and expanded.
Now with an extra 50,000 training samples.

If you used the original MNIST test set more than a few
times, chances are your models overfit the test set.

Time to test them on those extra samples. _ ,
arxiv.org/abs/1905.10498 [...] new test data is required each year

7:03 AM - May 29, 2019 - Facebook In order to avoid participants [...] over-
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Danger with Test Set Re-Use: Overfitting

Maybe we are just incrementally fitting to more and more random noise.

Overfitting sketch
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Testing for Overfitting

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger of overfitting to excessively
re-used test sets. By closely following the original dataset creation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.
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Three Forms of Overfitting

1. Test error = training error
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Three Forms of Overfitting

1. Test error = training error

2. Overfitting through test set re-use
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Alexnet (2012)
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» All models see a substantial drop in accuracy.
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» The best models on the original test set stay the best models on the new test set.
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CIFAR-10
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» Later models see a smaller drop in accuracy.
AutoAugment vs. ResNet: 4.9% difference on CIFAR-10

AutoAugment vs. ResNet: 10.3% difference on CIFAR-10.1
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Exact opposite!

» Later models see a smaller drop in accuracy.
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Overfitting Is Surprisingly Absent

No overfitting despite 10 years of test set re-use on CIFAR-10 and ImageNet.

» Relative ordering preserved. Progress is real!
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Overfitting Is Surprisingly Absent

No overfitting despite 10 years of test set re-use on CIFAR-10 and ImageNet.

» Relative ordering preserved. Progress is real!
MNIST: similar conclusions in |Yadav, Bottou’19] ; ;
no overfitting after 20+ years of MNIST

Our results unambiguously confirm the trends observed by Recht et al. [2018, 2019]:
although the misclassification rates are slightly off, classifier ordering and model
selection remain broadly reliable.
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Overfitting Is Surprisingly Absent

No overfitting despite 10 years of test set re-use on CIFAR-10 and ImageNet.

» Relative ordering preserved. Progress is real!

MNIST: similar conclusions in |Yadav, Bottou’19] - -
no overfitting after 20+ years of MNIST j ;

Kaggle: Meta-analysis of 120 ML competitions [rociofs, Fridovich-Keil, Miller, Shankar, Hardt, Recht, Schmidt "19]

Competition 5275 Competition 3788 Competition 7634 Competition 7115
100 All (n=35247) 300 All (n=24532) 100 All (n=24263) 100 All (n=5859)
> 801 > 80 > 80 > 80
O O O o
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Why Does Test Set Re-use Not Lead to Overfitting?

One mechanism: model similarity mitigates test set re-use.
[IMania, Miller, Schmidt, Hardt, Recht’19]

Similarity of two models fi and fj: agreement of 0-1 loss on the data distribution.

Model Similarities on ImageNet
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Why Does Test Set Re-use Not Lead to Overfitting?

One mechanism: model similarity mitigates test set re-use.
[IMania, Miller, Schmidt, Hardt, Recht’19]

Similarity of two models fi and fj: agreement of 0-1 loss on the data distribution.

Model Similarities on ImageNet
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Likely only a partial explanation (see Moritz Hardt’s keynote at COLT 2019).
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Two Possible Causes

New test accuracy

/

acCs(f) —acCsr (f)

; ~ 11%

/

Overfitting through test set re-use

/

acCs(f) —accep(f)

Distribution shift

e

+accp(f) —accp:(f

Original test accuracy (orig. test set S, new S’)

(S is drawn from D)

+ accp/(f

)

) —accg(f)

/

Generalization error (= 1%)
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Two Possible Causes

New test accuracy Overfitting through test set re-use (= 0%)
- - / / Distribution shift
acCs(f) —accg/(f) = acc Cp (/) /
< 1% +accp(f) —accpr(f)
+accp/(f) —accg/ (f)

Original test accuracy (orig. test set S, new S’) /
_— 1
acCq(f) = — L f(x) =y

> S| (Q%:E q Generalization error (= 1%)

acCp(f) =Lk yp1llf(z) =y (Sisdrawn from D)
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Three Forms of Overfitting

1. Test error = training error

2. Overfitting

through test set re-use

RGeS e o
s e I

Original Test Set New Test Set
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ImageNet Creation Process

Detailed description in [Deng, Dong, Socher, Li, Li, Fei-Fel’09]:



ImageNet Creation Process

Detailed description in [Deng, Dong, Socher, Li, Li, Fei-Fel’09]:

1. Find relevant search keywords for each class from WordNet
(e.g., “goldfish”, “Carassius auratus” for wnid “n014435377)
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1. Find relevant search keywords for each class from WordNet
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2. Search for images on Flickr
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1. Find relevant search keywords for each class from WordNet
(e.g., “goldfish”, “Carassius auratus” for wnid “n014435377)

2. Search for images on Flickr
3. Show images to MTurk workers
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ImageNet Creation Process

Detailed description in [Deng, Dong, Socher, Li, Li, Fel-Fel’09]:

1. Find relevant search keywords for each class from WordNet
(e.g., “goldfish”, “Carassius auratus” for wnid “n014435377)

2. Search for images on Flickr

3.| Show images to MTurk workers| *— Likely source of

distribution shift
4. Sample a class-balanced dataset

We replicated this process as closely as possible.
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Data Cleaning With MTurk
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Data Cleaning With MTurk
‘ Worker 1 % Worker 2
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Data Cleaning With MTurk

Number of workers who selected image i

Main quantity: selection frequency =
ain g y “ y Number of workers who saw image i
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Data Cleaning With MTurk

Number of workers who selected image i

Main quantity: selection frequency =
X y “ y Number of workers who saw image i
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Sampling Strategy for a New Test Set

Input: Selection frequencies from MTurk
(= fraction of workers selecting the image)

Output: representative & correct subset



Sampling Strategy for a New Test Set

Input: Selection frequencies from MTurk
(= fraction of workers selecting the image)

0.5 A

Output: representative & correct subset S

0.4 A

Our approach:

1. Bin the existing validation images
by selection frequency.
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Sampling Strategy for a New Test Set

Input: Selection frequencies from MTurk
(= fraction of workers selecting the image)

O
U

Output: representative & correct subset

O
A
1

Our approach:

o
w

1. Bin the existing validation images

by selection frequency. I I |
T OI4 OI6 Ot8 1.0

0O 02 04 06 08 1.0 "~ 0.0 0.2

O
N

Fraction of images

o
=

o
o

Selection frequency bin

2. Sample images from our candidate pool to
match the selection frequency distribution.



Three New Test Sets

ApproxCalibrated: Selection frequencies comparable to the original test set (0.71).

Average MTurk Average Top-1

Test Set

Selection Frequency Accuracy Change

ApproxCalibrated 0.73 -12%
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Three New Test Sets

ApproxCalibrated: Selection frequencies comparable to the original test set (0.71).
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Test Set Selection Frequency Accuracy Change
ApproxCalibrated 0.73 -12%
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Three New Test Sets

ApproxCalibrated: Selection frequencies comparable to the original test set (0.71).
Easier: Different sampling strateqgy, higher selection frequencies. \

IS 919 : Al correctly
Easiest: Highest selection frequencies in our candidate pool. — labeled!

Average MTurk Average Top-1
Test Set Selection Frequency Accuracy Change
ApproxCalibrated 0.73 -12%
Easier 0.85 - 3%
Easiest 0.93 + 2%

» Selection frequencies have large impact on classification accuracies.
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» Relative ordering Is stable, absolute accuracies are brittle.



1. How reliable are ML benchmark results? (Internal validity)

2. Do benchmark results transfer across learning problems? (External validity)

3. Do benchmark results transfer across test distributions”? (External validity)

4. Course projects



Why focus on ImageNet?

The community has spent a lot of effort on ImageNet.
In the end, ImageNet is not a real problem but an experiment / toy dataset.

Does progress on ImageNet actually lead to progress more broadly”

Food-101 Medical imaging
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Transfer Learning

Core idea: leverage a large dataset to improve performance on a small dataset

ImageNet randomly initialized
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Do Better ImageNet Models Transfer Better?

Simon Kornblith; Jonathon Shlens, and Quoc V. Le
Google Brain
{skornblith, shlens,gvl}@google.com

Abstract

Transfer learning is a cornerstone of computer vision,
yet little work has been done to evaluate the relationship
between architecture and transfer. An implicit hypothesis
in modern computer vision research is that models that per-
form better on ImageNet necessarily perform better on other
vision tasks. However, this hypothesis has never been sys-
tematically tested. Here, we compare the performance of 16
classification networks on 12 image classification datasets.
We find that, when networks are used as fixed feature ex-
tractors or fine-tuned, there is a strong correlation between
ImageNet accuracy and transfer accuracy (r = 0.99 and
0.96, respectively). In the former setting, we find that this re-
lationship is very sensitive to the way in which networks are
trained on ImageNet; many common forms of regularization
slightly improve ImageNet accuracy but yield penultimate
layer features that are much worse for transfer learning.
Additionally, we find that, on two small fine-grained image
classification datasets, pretraining on ImageNet provides
minimal benefits, indicating the learned features from Ima-
geNet do not transfer well to fine-grained tasks. Together,
our results show that ImageNet architectures generalize well
across datasets, but ImageNet features are less general than
previously suggested.
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Figure 1. Transfer learning performance is highly correlated with
ImageNet top-1 accuracy for fixed ImageNet features (left) and
fine-tuning from ImageNet initialization (right). The 16 points in
each plot represent transfer accuracy for 16 distinct CNN architec-
tures, averaged across 12 datasets after logit transformation (see
Section 3). Error bars measure variation in transfer accuracy across
datasets. These plots are replicated in Figure 2 (right).

ter network architectures learn better features that can be
transferred across vision-based tasks. Although previous
studies have provided some evidence for these hypotheses
(e.g. [6,71, 37, 35, 31]), they have never been systematically
explored across network architectures.

In the present work, we seek to test these hypotheses by in-
vestigating the transferability of both ImageNet features and



Datasets evaluated

Dataset Classes | Size (train/test) | Accuracy metric
Food-101 [5] 101 75,750/25,250 top-1
CIFAR-10 [43] 10 50,000/10,000 top-1
CIFAR-100 [43] 100 50,000/10,000 top-1
Birdsnap [4] 500 47,386/2,443 top-1
SUN397 [84] 397 19,850/19,850 top-1
Stanford Cars [41] 196 8,144/8,041 top-1
FGVC Aircraft [55] 100 6,667/3,333 mean per-class
PASCAL VOC 2007 Cls. [22] 20 5,011/4,952 11-point mAP
Describable Textures (DTD) [10] | 47 3,760/1,880 top-1
Oxford-IIIT Pets [61] 37 3,680/3,369 mean per-class
Caltech-101 [24] 102 3,060/6,084 mean per-class
Oxford 102 Flowers [59] 102 2,040/6,149 mean per-class

Recall ImageNet has 1.2 million training images (and 1,000 classes).



Better ImageNet Models Transfer Better

Fine-Tuned
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» Progress on ImageNet helps on a wide range of image classification datasets.
Also transfer of techniques to other tasks (object detection, etc.)

But: This is not guaranteed. Some datasets are considered “bad” or too specialized.
(Models don’t work “in the wild”)



Accuracy

More results from the paper

Logistic Regression
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1. How reliable are ML benchmark results? (Internal validity)

2. Do benchmark results transfer across learning problems? (External validity)

3. Do benchmark results transfer across test distributions? (External validity)

4. Course projects



Model evaluation in ML benchmarks

Train and test sets are usually derived from a larger dataset via a random split

» Train and test set are from the same distribution

Papers usually rank models by their performance on a single test set

But: when deployed “in the wild”, models usually encounter a different distribution.

» What happens on other test distributions?

How large is the performance drop of a model?

Is the rank ordering consistent?



Distribution shifts are a real problem



Distribution shifts are a real problem

February 2018:

Elon Musk expects to do coast-to-coast
autonomous Tesla drive in 3 to 6 months

Darrell Etherington @etherington / 3:13 pm PST = February 7. 2018 L_] comment

Tesla ©® had aimed to do a cross-country U.S. drive in one of its vehicles using
fully autonomous driving capabilities by the end of last year. Obviously it didn’t
make that goal, or you’d have heard about it. Instead, Tesla CEO Elon Musk now
says he anticipates being able to make the trip within three months, or six months

at the long end.
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Distribution shifts are a real problem

February 2018:

Elon Musk expects to do coast-to-coast
autonomous Tesla drive in 3 to 6 months

Darrell Etherington @etherington / 3:13 pm PST = February 7, 2018 [:] Comment

Tesla ©® had aimed to do a cross-country U.S. drive in one of its vehicles using
fully autonomous driving capabilities by the end of last year. Obviously it didn’t
make that goal, or you'd have heard about it. Instead, Tesla CEO Elon Musk now
says he anticipates being able to make the trip within three months, or six months

at the long end.

July 2019:

Elon Musk & v
@elonmusk

Replying to @PatrickLac007 @AngelGPonce and @Tesla

Parking lots are a remarkably hard problem. Doing an
iIn-depth engineering review of Enhanced Summon
later today.

11:42 AM - Jul 13, 2019 - Twitter for iPhone

83 Retweets 2.7K Likes
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Distribution shifts are a real problem

February 2018:

Elon Musk expects to do coast-to-coast
autonomous Tesla drive in 3 to 6 months

—

- . |

September 2019: Enhanced Summon released

July 2019:

Elon Musk &
| @elonmusk

Replying to @PatrickLac007 @AngelGPonce and @Tesla

Parking lots are a remarkably hard problem. Doing an
iIn-depth engineering review of Enhanced Summon
later today.

11:42 AM - Jul 13, 2019 - Twitter for iPhone

83 Retweets 2.7K Likes
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Distribution shifts are a real problem

February 2018:

Elon Musk expects to do coast-to-coast
autonomous Tesla drive in 3 to 6 months

—

- . |

September 2019: Enhanced Summon released

Variable generalization performance of a deep learning

model to detect pneumonia in chest radiographs: A cross-
sectional study

John R. Zech &, Marcus A. Badgeley BB, Manway Liu, Anthony B. Costa, Joseph J. Titano, Eric Karl Oermann [=]

Published: November 6, 2018 « htips://doi.org/10.1371/journal.pmed.1002683
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Distribution shifts are a real problem

Variable generalization performance of a deep learning

February 2018: model to detect pneumonia in chest radiographs: A cross-
sectional study

Elon MUSK expeCts to do coaSt-to-coaSt John R. Zech 8], Marcus A. Badgeley B, Manway Liu, Anthony B. Costa, Joseph J. Titano, Eric Karl Oermann [E]

autonomous TeS|a drive in 3 to 6 months Published: November 6, 2018 « https://doi.org/10.1371/journal.pmed.1002683
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B Even in the absence of recognized confounders, we
| would caution, following Recht and colleagues, that
“current accuracy numbers are brittle and susceptible to

September 2019: Enhanced Summon |éven minute natural variations in the data distribution”.
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Distribution shifts have been studied for a long time

DATASET SHIFT IN
MACHINE LEARNING

JOAQUIN QUINONERD-CANDELA. MASASHI SUGIVAMA
ANTON SCEWAIGEDFER, AND NEIL 0. LAWRENCE

But ML didn’t work that well yet
even In-distribution ...

-----------------

2011

From Neural Information Processing series :

Unbiased Look at Dataset Bias

Data set Sh ift in Ma Chi' Antonio Torralba Alexei A. Efros

- Massachusetts Institute of Technology Carnegie Mellon University
Learning

torralbalcsail.mit.edu efros@cs.cmu.edu

. . L Abstract 1 NI
Edited by Joaquin Quinonero-Candela @ ’) y)
Sugiyama, Anton SChwaighofer and Ng Datasets are an integral part of contemporary object ~

recognition research. They have been the chief reason for
the considerable progress in the field, not just as source

‘ . | of large amounts of training data, but also as means of
An overview Of TeCent effOl'tS N the maChln measuring and Comparing pe)fonnance ofcompeting algo_

rithms. At the same time, datasets have often been blamed
for narrowing the focus of object recognition research, re-

occurs when test and training inputs and ol ducing it to a single benchmark performance number. In-
deed, some datasets, that started out as data capture efforts

different distributions. aimed at representing the visual world, have become closed
worlds unto themselves (e.g. the Corel world, the Caltech-
101 world, the PASCAL VOC world). With the focus on
beating the latest benchmark numbers on the latest dataset,
have we perhaps lost sight of the original purpose?

The goal of this paper is to take stock of the current state
of recognition datasets. We present a comparison study us-
ing a set of popular datasets, evaluated based on a number

community to deal with dataset and covarig

of criteria including: relative data bias, cross-dataset gen- Caltech101 f Tiny B8 LabelMe

eralization, effects of closed-world assumption, and sample MSRC __ Corel __ COIL-100

value. The experimental results, some rather surprising, uiuc PASCALO7 =~ ImageNet = SUNOS__
suggest directions that can improve dataset collection as Figure 1. Name That Dataset: Given three images from twelve
well as algorithm evaluation protocols. But more broadly, popular object recognition datasets, can you match the images

the hope is to stimulate discussion in the community regard- with the dataset? (answer key below)

ing this very important, but largely neglected issue. anyone who has worked in object and scene recognition (in




Safety-Critical Applications of ML

Health care
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Safety-Critical Applications of ML

Health care

“ (11 Tube

Robotics Content moderation

=» Need reliable machine learning
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Measuring Robustness to Natural Distribution Shifts
in Image Classification

Rohan Taori Achal Dave Vaishaal Shankar
UC Berkeley CMU UC Berkeley
Nicholas Carlini Benjamin Recht Ludwig Schmidt
Google Brain UC Berkeley UC Berkeley
Abstract

We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image perturbations
(noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness
on synthetic distribution shift relates to distribution shift arising in real data. Informed by an
evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little
to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most
current techniques provide no robustness to the natural distribution shifts in our testbed. The
main exception is training on larger and more diverse datasets, which in multiple cases increases
robustness, but is still far from closing the performance gaps. Our results indicate that distribution
shifts arising in real data are currently an open research problem. We provide our testbed and
data as a resource for future work at https://modestyachts.github.io/imagenet-testbed/.




Our Testbed

1 cell = 1 model evaluation on 1 dataset
(total 10° image evaluations).
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Our Testbed
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1 cell = 1 model evaluation on 1 dataset
(total 10° image evaluations).

Models:
e “Standard” models (just ImageNet acc.)

e Robust models (adversarially robust
models, models with special data

augmentation, etc.)
e Models trained on more data



200+ models —»

Our Testbed
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1 cell = 1 model evaluation on 1 dataset
(total 10° image evaluations).

Models:
e “Standard” models (just ImageNet acc.)
e Robust models (adversarially robust
models, models with special data
augmentation, etc.)
e Models trained on more data

Natural distribution shifts:
e |[mageNetV2, ObjectNet, ImageNet-Vid-
Anchors, YTBB-Anchors

e |mageNet-A (adversarially filtered)



Our Testbed
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Goal: Classify Robustness Notions

We classify test-time robustness along two axes:

1. Adversarial vs. benign: does the input change depend on a trained model?

Data source




Goal: Classify Robustness Notions

We classify test-time robustness along two axes:

1. Adversarial vs. benign: does the input change depend on a trained model?

2. Synthetic vs. natural

Synthetic: computer-generated perturbations | Natural: images as they were recorded
of a real dataset

Data source New test sets

(Gaussian noise, contrast changes,
adversarial examples, etc.

New, unperturbed images.



Quantifying Robustness

Often in-distribution (“standard”) accuracy acts as a confounder.

In-distribution  Out-of-distribution
(Source) Accuracy (Target) Accuracy

Model B 90%
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Quantifying Robustness

Often in-distribution (“standard”) accuracy acts as a confounder.

In-distribution Out-of-distribution

(Source) Accuracy (Target) Accuracy Accuracy Drop

Model B 90% 7% 13%

» How do we compare models with different in-distribution accuracy?



Quantifying Robustness

Often in-distribution (“standard”) accuracy acts as a confounder.

In-distribution Out-of-distribution

(Source) Accuracy (Target) Accuracy Accuracy Drop

80% 75% 5%

Model B 90% 7% 13%

» How do we compare models with different in-distribution accuracy?
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Expected out-
of-distribution
accuracy
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Hypothetical Robustness Intervention

75 [Shankar, Roelofs,
Mania, Fang,

—~ Recht, Schmidt '20]
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e Standard models
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ImageNet (top-1, %)

» Do current models achieve effective robustness?
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Training on (a lot) more data gives a small amount of effective robustness.

Standard training
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y = X Robustness intervention Linear fit

Trained with more data

Training on (a lot) more data gives a small amount of effective robustness.



ObjectNet: A large-scale bias-controlled dataset for
pushing the limits of object recognition models

Andrei Barbu* David Mayo* Julian Alverio William Luo
MIT, CSAIL & CBMM MIT, CSAIL & CBMM MIT, CSAIL MIT, CSAIL

Christopher Wang Dan Gutfreund Joshua Tenenbaum Boris Katz
MIT, CSAIL MIT-IBM Watson AI MIT, BCS & CBMM MIT, CSAIL & CBMM

Abstract

We collect a large real-world test set, ObjectNet, for object recognition with controls
where object backgrounds, rotations, and 1maging viewpoints are random. Most
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ObjectNet

dataset
[Barbu, Mayo,
Alverio, Luo,

Wang, Gutfreund,
Tenenbaum, Katz
'19]

5 60 65 70 75 30 85 90
ImageNet (class-subsampled) (top-1, %)

------ y = X Robustness intervention Linear fit
Standard training rained with more data

Same trend: only more data gives effective robustness (but sometimes actually worse!)



Linear trends beyond ImageNet
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SQUAD (Stanford Question Answering Dataset): question answering on paragraphs

New Test Set F1

95

90

80

70
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50

Beyond Image Classification

Wikipedia

New York Times

5060 70 80 90 95
SQuAD Test F1

5060 70 80 90 95
SQuUAD Test F1

Reddit

5060 70 80 90 95
SQuAD Test F1

Amazon reviews

5060 70 80 90 95
SQuUAD Test F1

» Similar trends in natural language processing. [Miller, Krauth, Recht, Schmidt "20]
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CLIP: Connecting
Text and Images

We're introducing a neural network called CLIP which efficiently
learns visual concepts from natural language supervision. CLIP
can be applied to any visual classification benchmark by simply
providing the names of the visual categories to be recognized,

similar to the “zero-shot"” capabilities of GPT-2 and GPT-3.

January 5, 2021
15 minute read




IMAGENET
DATASET RESNET101 CLIP VIT-L

76.2%

70.1% +0%

889% +51%

72.3% +40 %

60.2% +35%

ImageNet Sketch

ImageNet Adversarial

. —_— 0
- 2.7% 77.1% +74 A)

» Very large improvements in out-of-distribution robustness.
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1. How reliable are ML benchmark results? (Internal validity)

2. Do benchmark results transfer across learning problems? (External validity)

3. Do benchmark results transfer across test distributions”? (External validity)

4. Course projects



Project content

In principle, anything broadly related to the course is welcome (ongoing research OK).
Talk to me if you have a specific idea in mind (please send me a message).

In the following, we’ll sketch out a default template for projects that will be interesting
across multiple domains.

Short version:
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In principle, anything broadly related to the course is welcome (ongoing research OK).
Talk to me if you have a specific idea in mind (please send me a message).

In the following, we’ll sketch out a default template for projects that will be interesting
across multiple domains.

Short version:

Scatter plots



Why scatter plots?

A lot of questions in this course revolve around what ML evaluations mean.
How do measurements acquire meaning?
Some measurements are directly relevant, e.g., performance in an application

Other measurements acquire meaning via connections to other quantities.

(E.g., most physical quantities like mass, etc.)

A simple but very useful way to understand the connection between two
quantities is to run experiments, measure both, and plot them

» Scatter plots



Two types of experiments

Transfer of performance across datasets

Pick two or more datasets / benchmarks in your domain of expertise
(e.g., pairs of datasets that seem more or less related)

Build a testbed with a range of different methods
Different architectures, pre-training datasets, optimizers, etc.
The testbed should cover a large performance range on the source dataset.

Evaluate the testbed on the source dataset and the other datasets
(With fine-tuning, training from scratch, etc.)

Make a scatter plot and interpret the results
Are there consistent trends? What do they tell us about the datasets”?



Two types of experiments

Performance under distribution shift

Pick one dataset in your domain of expertise and create one or more dist. shifts
(e.g., from other datasets, structured splits of datasets, new data, etc.)

Build a testbed with a range of different methods
Different architectures, pre-training datasets, optimizers, etc.
The testbed should cover a large performance range on the standard test set

Evaluate the testbed on the standard test set and the other test sets
No fine-tuning / further training!

Make a scatter plot and interpret the results
Are there consistent trends? What do they tell us about the datasets”?



Project Logistics

Group size 1 - 3 people

Project proposals due Thursday next week (October 14)
Talk to us before then if you have questions

Proposals should be 1 - 2 pages of text describing the experiment (datasets used,
models in the testbed, etc.) and contain sketches of the key plots.

One class (likely October 19): short presentations what everyone is planning to do.

Last two classes of the quarter: project presentations with results

Final deliverable: project report + GitHub repository (due date likely Dec 11).



Project Logistics

Group size 1 - 3 people

Project proposals due Thursday next week (October 14)
Talk to us before then if you have questions

Proposals should be 1 - 2 pages of text describing the experiment (datasets used,
models in the testbed, etc.) and contain sketches of the key plots.

One class (likely October 19): short presentations what everyone is planning to do.
Last two classes of the quarter: project presentations with results

Final deliverable: project report + GitHub repository (due date likely Dec 11).
Questions?



